Journal of Frontiers of Computer Science and Technology ›› 2022, Vol. 16 ›› Issue (2): 395-402.DOI: 10.3778/j.issn.1673-9418.2009003
• Artificial Intelligence • Previous Articles Next Articles
XIAO Zeguan1, CHEN Qingliang1,2,+()
Received:
2020-09-03
Revised:
2021-01-08
Online:
2022-02-01
Published:
2021-01-28
About author:
XIAO Zeguan, born in 1995, M.S. candidate. His research interests include natural language processing, aspect based sentiment analysis, etc.Supported by:
通讯作者:
+ E-mail: tpchen@jnu.edu.cn作者简介:
肖泽管(1995—),男,海南万宁人,硕士研究生,主要研究方向为自然语言处理、属性级情感分析等。基金资助:
CLC Number:
XIAO Zeguan, CHEN Qingliang. Aspect-Based Sentiment Analysis Model with Multiple Grammatical Information[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(2): 395-402.
肖泽管, 陈清亮. 融合多种类型语法信息的属性级情感分析模型[J]. 计算机科学与探索, 2022, 16(2): 395-402.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2009003
Dataset | Positive | Neutral | Negative | |||
---|---|---|---|---|---|---|
Train | Test | Train | Test | Train | Test | |
Restaurant | 2 164 | 728 | 633 | 196 | 805 | 196 |
Laptop | 987 | 341 | 460 | 169 | 866 | 128 |
1 561 | 173 | 3 127 | 346 | 1 560 | 173 |
Table 1 Statistics of datasets
Dataset | Positive | Neutral | Negative | |||
---|---|---|---|---|---|---|
Train | Test | Train | Test | Train | Test | |
Restaurant | 2 164 | 728 | 633 | 196 | 805 | 196 |
Laptop | 987 | 341 | 460 | 169 | 866 | 128 |
1 561 | 173 | 3 127 | 346 | 1 560 | 173 |
Method | Restaurant | Laptop | ||||
---|---|---|---|---|---|---|
Accuracy | Macro-F1 | Accuracy | Macro-F1 | Accuracy | Macro-F1 | |
IAN* | 78.60 | — | 72.10 | — | — | — |
AOA* | 81.20 | — | 74.50 | — | — | — |
AEN-BERT | 81.74 | 71.24 | 78.35 | 73.71 | 73.78 | 72.33 |
CDT | 81.78 | 72.32 | 75.73 | 71.42 | 74.00 | 72.19 |
TD-GAT-BERT* | 83.00 | — | 79.80 | — | — | — |
ASGCN* | 80.77 | 72.02 | 75.55 | 71.05 | 72.15 | 70.40 |
ASGCN-BERT | 84.67 | 76.95 | 78.98 | 74.89 | 75.08 | 73.68 |
BERT-SPC | 85.29 | 77.67 | 78.02 | 73.10 | 74.38 | 73.01 |
Ours1,5,9 | 85.10 | 77.65 | 78.21 | 74.02 | 75.96 | 74.69 |
Ours12 | 85.33 | 77.93 | 78.40 | 74.32 | 76.02 | 74.75 |
Ours | 85.42 | 79.14 | 78.98 | 75.28 | 76.21 | 74.86 |
Table 2 Experimental results %
Method | Restaurant | Laptop | ||||
---|---|---|---|---|---|---|
Accuracy | Macro-F1 | Accuracy | Macro-F1 | Accuracy | Macro-F1 | |
IAN* | 78.60 | — | 72.10 | — | — | — |
AOA* | 81.20 | — | 74.50 | — | — | — |
AEN-BERT | 81.74 | 71.24 | 78.35 | 73.71 | 73.78 | 72.33 |
CDT | 81.78 | 72.32 | 75.73 | 71.42 | 74.00 | 72.19 |
TD-GAT-BERT* | 83.00 | — | 79.80 | — | — | — |
ASGCN* | 80.77 | 72.02 | 75.55 | 71.05 | 72.15 | 70.40 |
ASGCN-BERT | 84.67 | 76.95 | 78.98 | 74.89 | 75.08 | 73.68 |
BERT-SPC | 85.29 | 77.67 | 78.02 | 73.10 | 74.38 | 73.01 |
Ours1,5,9 | 85.10 | 77.65 | 78.21 | 74.02 | 75.96 | 74.69 |
Ours12 | 85.33 | 77.93 | 78.40 | 74.32 | 76.02 | 74.75 |
Ours | 85.42 | 79.14 | 78.98 | 75.28 | 76.21 | 74.86 |
句子 | 标签 | AEN-BERT | Ours |
---|---|---|---|
While there’s decent menu, it shouldn’t take 10 minutes to get your [drinks] and 45 for a dessert pizza. 译:尽管有不错的菜单,也不应该花10分钟才上【饮料】和花45分钟才上披萨。 | 中立 | 正向 | 中立 |
Although the restaurant itself is nice, I prefer not to go for the[food]. 译:虽然这家餐馆本身很好,但我不想去吃那里的【食物】。 | 负向 | 正向 | 负向 |
The [food] was mediocre and the service was severely slow. 译:【食物】一般般,服务很慢。 | 中立 | 负向 | 中立 |
Great [food] but the service was dreadful! 译:【食物】很好,但服务很差。 | 正向 | 负向 | 正向 |
The staff members are extremely friendly and even replaced my [drink] once when I dropped it outside. 译:工作人员非常友好,甚至有一次我把【饮料】掉在外面时帮我换掉了。 | 中立 | 正向 | 中立 |
However, I can refute that [OSX] is "fast". 译:然而,我否认【OSX】“快”。 | 负向 | 正向 | 正向 |
Table 3 Case study
句子 | 标签 | AEN-BERT | Ours |
---|---|---|---|
While there’s decent menu, it shouldn’t take 10 minutes to get your [drinks] and 45 for a dessert pizza. 译:尽管有不错的菜单,也不应该花10分钟才上【饮料】和花45分钟才上披萨。 | 中立 | 正向 | 中立 |
Although the restaurant itself is nice, I prefer not to go for the[food]. 译:虽然这家餐馆本身很好,但我不想去吃那里的【食物】。 | 负向 | 正向 | 负向 |
The [food] was mediocre and the service was severely slow. 译:【食物】一般般,服务很慢。 | 中立 | 负向 | 中立 |
Great [food] but the service was dreadful! 译:【食物】很好,但服务很差。 | 正向 | 负向 | 正向 |
The staff members are extremely friendly and even replaced my [drink] once when I dropped it outside. 译:工作人员非常友好,甚至有一次我把【饮料】掉在外面时帮我换掉了。 | 中立 | 正向 | 中立 |
However, I can refute that [OSX] is "fast". 译:然而,我否认【OSX】“快”。 | 负向 | 正向 | 正向 |
[1] | LIU B. Sentiment analysis and opinion mining[M]//HIRST G. Synbook Lectures on Human Language Technologies. San Rafael: Morgan & Claypool, 2012: 1-167. |
[2] | WAGNER J, ARORA P, CORTES S, et al. DCU: aspect-based polarity classification for SemEval task 4[C]//Proceedings of the 8th International Workshop on Semantic Evaluation, Dublin, Aug 23-24, 2014. Stroudsburg: ACL, 2014: 223-229. |
[3] | JIN W, HO H H. A novel lexicalized HMM-based learning framework for Web opinion mining[C]//Proceedings of the 26th Annual International Conference on Machine Learning, Montreal, Jun 14-18, 2009. New York: ACM, 2009: 465-472. |
[4] | RUDER S, GHAFFARI P, BRESLIN J G. A hierarchical model of reviews for aspect-based sentiment analysis[C]// Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, Austin, Nov 1-4, 2016. Stroudsburg: ACL, 2016: 999-1005. |
[5] | TANG D Y, QIN B, LIU T. Aspect level sentiment classification with deep memory network[C]//Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, Austin, Nov 1-4, 2016. Stroudsburg: ACL, 2016: 214-224. |
[6] | MA D H, LI S J, ZHANG X D, et al. Interactive attention networks for aspect-level sentiment classification[C]//Proceedings of the 26th International Joint Conference on Artificial Intelligence, Melbourne, Aug 19-25, 2017. Menlo Park: AAAI, 2017: 4068-4074. |
[7] | SONG Y W, WANG J H, JIANG T, et al. Attentional encoder network for targeted sentiment classification[J]. arXiv:1902.09314, 2019. |
[8] | HUANG B X, OU Y L, CARLEY K M. Aspect level sentiment classification with attention-over-attention neural networks[C]//LNCS 10899: Proceedings of the 11th International Conference on Social, Cultural, and Behavioral Modeling,Washington, Jul 10-13, 2019. Cham: Springer, 2019: 197-206. |
[9] | JAWAHAR G, SAGOT B, SEDDAH D. What does BERT learn about the structure of language?[C]//Proceedings of the 57th Conference of the Association for Computational Linguistics, Florence, Jul 28-Aug 2, 2019. Stroudsburg: ACL, 2019: 3651-3657. |
[10] | DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[J]. arXiv:1810.04805, 2018. |
[11] | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[J]. arXiv:1706.03762, 2017. |
[12] | MIKOLOV T, SUTSKEVER I, CHEN K, et al. Distributed representations of words and phrases and their compositionality[C]//Proceedings of the 27th Annual Conference on Neural Information Processing Systems, Lake Tahoe, Dec 5-8, 2013. Red Hook: Curran Associates, 2013: 3111-3119. |
[13] | PENNINGTON J, SOCHER R, MANNING C D. Glove: global vectors for word representation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, Doha, Oct 25-29, 2014. Stroudsburg:ACL, 2014: 1532-1543. |
[14] | KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[J]. arXiv:1609.02907, 2016. |
[15] | KIPF T. Graph convolutional networks[EB/OL]. [2021-01-01]. https://tkipf.github.io/graph-convolutional-networks/. |
[16] | LI D, WEI F R, TAN C Q, et al. Adaptive recursive neural network for target-dependent Twitter sentiment classification[C]//Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, Baltimore, Jun 22-27, 2014. Stroudsburg: ACL, 2014: 49-54. |
[17] | NGUYEN T H, SHIRAI K. PhraseRNN: phrase recursive neural network for aspect-based sentiment analysis[C]//Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, Lisbon, Sep 17-21, 2015. Stroudsburg: ACL, 2015: 2509-2514. |
[18] | LAKKARAJU H, SOCHER R, MANNING C J. Aspect specific sentiment analysis using hierarchical deep learning[C]//Proceedings of the 28th Annual Conference on Neural Information Processing Systems, Montreal, Dec 12, 2014. Red Hook: Curran Associates, 2014: 1-9. |
[19] | HUANG B X, CARLEY K M. Syntax-aware aspect level sentiment classification with graph attention networks[C]// Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, Hong Kong, China, Nov 3-7, 2019. Stroudsburg: ACL, 2019: 5469-5477. |
[20] | SUN K, ZHANG R C, MENSAH S, et al. Aspect-level sentiment analysis via convolution over dependency tree[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, Hong Kong, China, Nov 3-7, 2019. Stroudsburg: ACL, 2019: 5679-5688. |
[21] | ZHANG C, LI Q C, SONG D W. Aspect-based sentiment classification with aspect-specific graph convolutional networks[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, Hong Kong, China, Nov 3-7, 2019. Stroudsburg: ACL, 2019: 4568-4578. |
[22] | PONTIKI M, GALANIS D, PAVLOPOULOS J, et al. SemEval- 2014 Task 4: aspect based sentiment analysis[C]//Proceedings of the 8th International Workshop on Semantic Evaluation, Dublin, Aug 23-24, 2014. Stroudsburg: ACL, 2014: 27-35. |
[23] | KINGMA D P, BA J. Adam: a method for stochastic optimization[J]. arXiv:1412.6980, 2014. |
[1] | LIU Ying, WANG Zhe, FANG Jie, ZHU Tingge, LI Linna, LIU Jiming. Multi-modal Public Opinion Analysis Based on Image and Text Fusion [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(6): 1260-1278. |
[2] | BAO Guangbin, LI Gangle, WANG Guoxiong. Bimodal Interactive Attention for Multimodal Sentiment Analysis [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(4): 909-916. |
[3] | WANG Yurong, LIN Min, LI Yanling. Research of BERT Cross-Lingual Word Embedding Learning [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(8): 1405-1417. |
[4] | WU Jiawei, SUN Yanchun. Recommendation System for Medical Consultation Integrating Knowledge Graph and Deep Learning Methods [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(8): 1432-1440. |
[5] | ZHANG Han, JIA Tianyuan, LUO Fang, ZHANG Sheng, WU Xia. Study on Predicting Psychological Traits of Online Text by BERT [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(8): 1459-1468. |
[6] | LIU Jiming, ZHANG Peixiang, LIU Ying, ZHANG Weidong, FANG Jie. Summary of Multi-modal Sentiment Analysis Technology [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(7): 1165-1182. |
[7] | ZHOU Weixiao, LAN Wenfei, XU Zhiming, ZHU Rongbo. SFExt-PGAbs: Two-Stage Summarization Model for Long Document [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(5): 907-921. |
[8] | CHEN Hong, YANG Yan, DU Shengdong. Research on Aspect-Level Sentiment Analysis of User Reviews [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(3): 478-485. |
[9] | YANG Chen, SONG Xiaoning, SONG Wei. SentiBERT: Pre-training Language Model Combining Sentiment Information [J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(9): 1563-1570. |
[10] | ZHANG Zhoubin, XIANG Yan, LIANG Junge, YANG Jialin, MA Lei. Using Position-Enhanced Attention Mechanism for Aspect-Based Sentiment Classi-fication [J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(4): 619-627. |
[11] | CAO Yu, LI Tianrui, JIA Zhen, YIN Chengfeng. BGRU: New Method of Chinese Text Sentiment Analysis [J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(6): 973-981. |
[12] | YU Tao, LUO Ke. Sentiment Analysis with Dynamic Multi-Pooling Convolution Neural Network [J]. Journal of Frontiers of Computer Science and Technology, 2018, 12(7): 1182-1190. |
[13] | ZHAO Zhibin, LIU Huan, YAO Lan, YU Ge. Research on Dimension Mining and Sentiment Analysis for Chinese Product Comments [J]. Journal of Frontiers of Computer Science and Technology, 2018, 12(3): 341-349. |
[14] | LI Dayu, WANG Jia, WEN Zhi, WANG Suge. Labeled Joint Aspect Sentiment Model for Movie Reviews [J]. Journal of Frontiers of Computer Science and Technology, 2018, 12(2): 300-307. |
[15] | PU Ciren, HOU Jialin, LIU Yue, ZHAI Donghai. Deep Learning Algorithm Applied in Tibetan Sentiment Analysis [J]. Journal of Frontiers of Computer Science and Technology, 2017, 11(7): 1122-1130. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/