Journal of Frontiers of Computer Science and Technology ›› 2022, Vol. 16 ›› Issue (4): 877-887.DOI: 10.3778/j.issn.1673-9418.2010066
• Artificial Intelligence • Previous Articles Next Articles
WANG Hongbin1,2, JIN Ziling1,2, MAO Cunli1,2,+()
Received:
2020-10-26
Revised:
2021-01-06
Online:
2022-04-01
Published:
2021-02-03
About author:
WANG Hongbin, born in 1983, Ph.D., associate professor, M.S. supervisor. His research interests include intelligent information system, natural language processing and data analysis.Supported by:
通讯作者:
+ E-mail: maocunli@163.com作者简介:
王红斌(1983—),男,云南曲靖人,博士, 副教授,硕士生导师,主要研究方向为智能信息系统、自然语言处理、数据分析。基金资助:
CLC Number:
WANG Hongbin, JIN Ziling, MAO Cunli. Extractive News Text Automatic Summarization Combined with Hierarchical Attention[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(4): 877-887.
王红斌, 金子铃, 毛存礼. 结合层级注意力的抽取式新闻文本自动摘要[J]. 计算机科学与探索, 2022, 16(4): 877-887.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2010066
数据集 | 新闻篇章数 | 参考摘要数 |
---|---|---|
训练集 | 287 227 | 287 227 |
验证集 | 13 368 | 13 368 |
测试集 | 11 490 | 11 490 |
Table 1 CNN/Daily Mail dataset
数据集 | 新闻篇章数 | 参考摘要数 |
---|---|---|
训练集 | 287 227 | 287 227 |
验证集 | 13 368 | 13 368 |
测试集 | 11 490 | 11 490 |
数据集 | 新闻篇章数 | 参考摘要数 |
---|---|---|
训练集 | 137 900 | 137 900 |
验证集 | 2 000 | 2 000 |
测试集 | 9 934 | 9 934 |
Table 2 New York Times dataset
数据集 | 新闻篇章数 | 参考摘要数 |
---|---|---|
训练集 | 137 900 | 137 900 |
验证集 | 2 000 | 2 000 |
测试集 | 9 934 | 9 934 |
数据集 | 新闻篇章数 | 参考摘要数 |
---|---|---|
训练集 | 44 972 | 44 972 |
验证集 | 5 622 | 5 622 |
测试集 | 5 622 | 5 622 |
Table 3 Multi-News dataset
数据集 | 新闻篇章数 | 参考摘要数 |
---|---|---|
训练集 | 44 972 | 44 972 |
验证集 | 5 622 | 5 622 |
测试集 | 5 622 | 5 622 |
Models | ROUGE-1 | ROUGE-2 | ROUGE-L |
---|---|---|---|
LEAD3 | 40.24 | 17.70 | 36.45 |
TextRank | 40.20 | 17.56 | 36.44 |
CRSum | 40.52 | 18.08 | 36.81 |
NN-SE | 41.13 | 18.59 | 37.40 |
PGN | 39.53 | 17.28 | 36.38 |
NeuSum | 41.59 | 19.01 | 37.98 |
HSG+Tri-Blocking | 42.95 | 19.76 | 39.23 |
NeuSum+sentAtt | 43.05 | 19.82 | 37.71 |
NeuSum+WordAtt | 43.06 | 19.87 | 38.64 |
NeuSum+hieAtt | 43.37 | 20.13 | 38.89 |
Table 4 ROUGE F1 points on CNN/Daily Mail %
Models | ROUGE-1 | ROUGE-2 | ROUGE-L |
---|---|---|---|
LEAD3 | 40.24 | 17.70 | 36.45 |
TextRank | 40.20 | 17.56 | 36.44 |
CRSum | 40.52 | 18.08 | 36.81 |
NN-SE | 41.13 | 18.59 | 37.40 |
PGN | 39.53 | 17.28 | 36.38 |
NeuSum | 41.59 | 19.01 | 37.98 |
HSG+Tri-Blocking | 42.95 | 19.76 | 39.23 |
NeuSum+sentAtt | 43.05 | 19.82 | 37.71 |
NeuSum+WordAtt | 43.06 | 19.87 | 38.64 |
NeuSum+hieAtt | 43.37 | 20.13 | 38.89 |
Models | ROUGE-1 | ROUGE-2 | ROUGE-L |
---|---|---|---|
LEAD3 | 31.17 | 15.59 | 27.86 |
TextRank | 32.38 | 16.27 | 28.93 |
CRSum | 31.46 | 15.50 | 27.96 |
NN-SE | 36.66 | 19.88 | 32.97 |
NeuSum | 37.71 | 20.49 | 33.92 |
NeuSum+sentAtt | 37.39 | 20.42 | 33.31 |
NeuSum+WordAtt | 38.89 | 20.72 | 34.09 |
NeuSum+hieAtt | 38.41 | 20.99 | 33.09 |
Table 5 ROUGE F1 points on New York Times %
Models | ROUGE-1 | ROUGE-2 | ROUGE-L |
---|---|---|---|
LEAD3 | 31.17 | 15.59 | 27.86 |
TextRank | 32.38 | 16.27 | 28.93 |
CRSum | 31.46 | 15.50 | 27.96 |
NN-SE | 36.66 | 19.88 | 32.97 |
NeuSum | 37.71 | 20.49 | 33.92 |
NeuSum+sentAtt | 37.39 | 20.42 | 33.31 |
NeuSum+WordAtt | 38.89 | 20.72 | 34.09 |
NeuSum+hieAtt | 38.41 | 20.99 | 33.09 |
Models | ROUGE-1 | ROUGE-2 | ROUGE-L |
---|---|---|---|
LEAD3 | 43.08 | 14.27 | 38.97 |
NeuSum | 43.47 | 16.60 | 39.09 |
NeuSum+sentAtt | 44.54 | 17.17 | 39.37 |
NeuSum+WordAtt | 44.82 | 17.06 | 36.85 |
NeuSum+hieAtt | 44.91 | 18.06 | 39.35 |
Table 6 ROUGE F1 points on Multi-News %
Models | ROUGE-1 | ROUGE-2 | ROUGE-L |
---|---|---|---|
LEAD3 | 43.08 | 14.27 | 38.97 |
NeuSum | 43.47 | 16.60 | 39.09 |
NeuSum+sentAtt | 44.54 | 17.17 | 39.37 |
NeuSum+WordAtt | 44.82 | 17.06 | 36.85 |
NeuSum+hieAtt | 44.91 | 18.06 | 39.35 |
[1] | NALLAPATI R, ZHAI F, ZHOU B. SummaRuNNer: a re-current neural network based sequence model for extractive summarization of documents[J]. arXiv: 1611. 04230, 2016. |
[2] | REN P, CHEN Z, REN Z, et al. Leveraging contextual sen-tence relations for extractive summarization using a neural attention model[C]// Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval, Tokyo, Aug 7-11, 2017. New York: ACM, 2017: 95-104. |
[3] | ZHOU Q, YANG N, WEI F, et al. Neural document sum-marization by jointly learning to score and select sentences[J]. arXiv: 1807. 02305, 2018. |
[4] | WANG H, WANG X, XIONG W, et al. Self-supervised lear-ning for contextualized extractive summarization[J]. arXiv: 1906. 04466, 2019. |
[5] | LIU Y. Fine-tune BERT for extractive summarization[J]. arXiv: 1903. 10318,2019. |
[6] | WANG D, LIU P, ZHENG Y, et al. Heterogeneous graph neural networks for extractive document summarization[J]. arXiv: 2004. 12393, 2020. |
[7] | BAHDANAU D, CHO K, BENGIO Y, Neural machine trans-lation by jointly learning to align and translate[J]. arXiv: 1409. 0473, 2014. |
[8] |
LUHN H P. The automatic creation of literature abstracts[J]. IBM Journal of Research and Development, 1958, 2(2):159-165.
DOI URL |
[9] |
ERKAN G, RADEV D R. LexRank: graph-based lexical cen-trality as salience in text summarization[J]. Journal of Artificial Intelligence Research, 2004, 22:457-479.
DOI URL |
[10] | CAO Z Q, WEI F R, DONG L, et al. Ranking with recursive neural networks and its application to multi-document sum-marization[C]// Proceedings of the 29th AAAI Conference on Artificial Intelligence, Austin, Jan 25-30, 2015. Menlo Park: AAAI, 2015: 2153-2159. |
[11] | 刘娜, 路莹, 唐晓君, 等. 基于LDA重要主题的多文档自动摘要算法[J]. 计算机科学与探索, 2015, 9(2):242-248. |
LIU N, LU Y, TANG X J, et al. Multi-document summariza-tion algorithm based on significance topic of LDA[J]. Journal of Frontiers of Computer Science and Technology, 2015, 9(2):242-248. | |
[12] | DA CUNHA I, FERNÁNDEZ S, VELÁZQUEZ-MORALES P, et al. A new hybrid summarizer based on vector space model, statistical physics and linguistics[C]// LNCS 4827: Proceedings of the 6th Mexican International Conference on Artificial Intelligence, Aguascalientes, Nov 4-10, 2007. Berlin, Heidelberg: Springer, 2007: 872-882. |
[13] | 李峰, 黄金柱, 李舟军, 等. 使用关键词扩展的新闻文本自动摘要方法[J]. 计算机科学与探索, 2016, 10(3):372-380. |
LI F, HUANG J Z, LI Z J, et al. Automatic summarization method of news texts using keywords expansion[J]. Journal of Frontiers of Computer Science and Technology, 2016, 10(3):372-380. | |
[14] | ORASAN C. The influence of personal pronouns for auto-matic summarisation of scientific articles[C]// Proceedings of the 5th Discourse Anaphora and Anaphor Resolution Collo-quium, Azores, Sep 23-24, 2004. Berlin, Heidelberg: Springer, 2004: 127-132. |
[15] | MITKOV R, EVANS R, ORĂSAN C, et al. Anaphora resolu-tion: to what extent does it help NLP applications?[C]// LNCS 4410: Proceedings of the 6th Discourse Anaphora and Ana-phor Resolution Colloquium, Lagos, Mar 29-30, 2007. Berlin, Heidelberg: Springer, 2007: 179-190. |
[16] | KUPIEC J, PEDERSEN J O, CHEN F. A trainable document summarizer[C]// Proceedings of the 18th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Seattle, Jul 9-13, 1995. New York: ACM, 1995: 68-73. |
[17] | SCHLESINGER J D, OKUROWSKI M E, CONROY J M, et al. Understanding machine performance in the context of human performance for multi-document summarization[C]// Proceedings of the 2002 Workshop on Automatic Summa-rization, Philadelphia, Jul 11-12, 2002. Gaithersburg: NIST, 2002: 71-77. |
[18] | CONROY J M, O’LEARY D P. Text summarization via hid-den Markov models[C]// Proceedings of the 24th Annual Inter-national ACM SIGIR Conference on Research and Develop-ment in Information Retrieval, New Orleans, Sep 9-13, 2001. New York: ACM, 2001: 406-407. |
[19] | AONE C, OKUROWSKI M E, GORLINSKY J, et al. Trai-nable, scalable summarization using robust NLP and machine learning[C]// Proceedings of the 36th Annual Meeting of the Association for Computational Linguistics and 17th Inter-national Conference on Computational Linguistics, Montreal, Aug 10-14, 1998. New York: ACM, 1998: 62-66. |
[20] | SVORE K M, VANDERWENDE L, BURGES C J C. Enha-ncing single-document summarization by combining RankNet and third-party sources[C]// Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, Prague, Jun 28-30, 2007. Stroudsburg: ACL, 2007: 448-457. |
[21] | BURGES C J C, SHAKED T, RENSHAW E, et al. Learning to rank using gradient descent[C]// Proceedings of the 22nd International Conference on Machine Learning, Bonn, Aug 7-11, 2005. New York: ACM, 2005: 89-96. |
[22] | SCHILDER F, KONDADADI R. FastSum: fast and accurate query-based multi-document summarization[C]// Proceedings of the 46th Annual Meeting of the Association for Computa-tional Linguistics on Human Language Technologies, Colum-bus, Jun 15-20, 2008. New York: ACM, 2008: 205-208. |
[23] | LI S, OUYANG Y, WANG W, et al. Multi document sum-marization using support vector regression[C]// Proceedings of the 2007 Document Understanding Conference, Rochester, Apr 2007. New York: Academic, 2007: 45-50. |
[24] | MANI I, BLOEDORN E. Multi-document summarization by graph search and matching[C]// Proceedings of the 14th National Conference on Artificial Intelligence and 9th Innova-tive Applications of Artificial Intelligence Conference, Pro-vidence, Jul 27-31, 1997. Menlo Park: AAAI, 1997: 622-628. |
[25] | WAN X J, XIAO J G. Towards a unified approach based on affinity graph to various multi-document summarizations[C]// LNCS 4675: Proceedings of the 11th European Conference on Research & Advanced Technology for Digital Libraries, Budapest, Sep 16-21, 2007. Berlin, Heidelberg: Springer, 2007: 297-308. |
[26] | GIANNAKOPOULOS G, KARKALETSIS V, VOUROS G A. Testing the use of n-gram graphs in summarization sub-tasks[C]// Proceedings of the 2008 Text Analysis Conference, Gaithersburg, Nov 17-19, 2008: 324-334. |
[27] | MORALES L P, ESTEBAN A D, GERVAS P. Concept graph based biomedical automatic summarization using ontologies[C]// Proceedings of the 1st Text Analysis Conference, Gai-thersburg, Nov 17-19, 2008: 53-56. |
[28] | ERKAN G, RADEV D R. LexPageRank: prestige in multi-document text summarization[C]// Proceedings of the 2004 Conference on Empirical Methods in Natural Language Pro-cessing, Barcelona, Jul 25-26, 2004. Stroudsburg: ACL, 2004: 365-371. |
[29] | ERKAN G, RADEV D R. LexPageRank: prestige in multi-document text summarization[C]// Proceedings of the 2004 Conference on Empirical Methods in Natural Language Processing, Barcelona, Jul 25-26, 2004. Stroudsburg: ACL, 2004: 365-371. |
[30] | MIHALCEA R. Graph-based ranking algorithms for sentence extraction, applied to text summarization[C]// Proceedings of the 42nd Annual Meeting of the Association for Computa-tional Linguistics, Barcelona, Jul 21-26, 2004. Stroudsburg: ACL, 2004: 170-173. |
[31] | YU L T, ZHANG W N, WANG J, et al. SeqGAN: sequence generative adversarial nets with policy gradient[C]// Procee-dings of the 31st AAAI Conference on Artificial Intelligence, San Francisco, Feb 4-9, 2017. Menlo Park: AAAI, 2017: 2852-2858. |
[32] |
AL-SABAHI K, ZHANG Z P, NADHER M. A hierarchical structured self-attentive model for extractive document sum-marization (HSSAS)[J]. IEEE Access, 2018, 6:24205-24212.
DOI URL |
[33] | ZHANG X X, WEI F R, ZHOU M. HIBERT: document level pre-training of hierarchical bidirectional transformers for document summarization[J]. arXiv: 1905. 06566, 2019. |
[34] | ZHONG M, LIU P F, CHEN Y R, et al. Extractive sum-marization as text matching[J]. arXiv: 2004. 08795, 2020. |
[35] | HERMANN K M, KOCISKÝ T, GREFENSTETTE E, et al. Teaching machines to read and comprehend[C]// Proceedings of the Annual Conference on Neural Information Processing Systems 2015, Montreal, Dec 7-12, 2015. Red Hook: Curran Associates, 2015: 1693-1701. |
[36] | FABBRI A R, LI I, SHE T, et al. Multi-news: a large-scale multi-document summarization dataset and abstractive hiera-rchical model[J]. arXiv: 1906. 01749, 2019. |
[37] | LIN C Y. ROUGE: a package for automatic evaluation of summaries[C]// Proceedings of the 2004 Workshop on Text Summarization Branches Out, Barcelona, Jul 2004. Stroud-sburg: ACL, 2004: 74-81. |
[38] | MIHALCEA R, TARAU P. TextRank: bringing order into text[C]// Proceedings of the 2004 Conference on Empirical Methods in Natural Language Processing, Barcelona, Jul 25-26, 2004. Stroudsburg: ACL, 2004: 404-411. |
[39] | CHENG J, LAPATA M. Neural summarization by extracting sentences and words[J]. arXiv: 1603. 07252, 2016. |
[40] | SEE A, LIU P J, MANNING C D. Get to the point: summari-zation with pointer-generator networks[J]. arXiv: 1704. 04368, 2017. |
[1] | LI Yuxuan, HONG Xuehai, WANG Yang, TANG Zhengzheng, BAN Yan. Groupwise Learning to Rank Algorithm with Introduction of Activated Weighting [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(7): 1594-1602. |
[2] | CHEN Jie, CHEN Jialin, ZHAO Shu, ZHANG Yanping. Hierarchical Labels Guided Attributed Network Embedding [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(7): 1279-1288. |
[3] | ZHOU Weixiao, LAN Wenfei, XU Zhiming, ZHU Rongbo. SFExt-PGAbs: Two-Stage Summarization Model for Long Document [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(5): 907-921. |
[4] | REN Jianhua, LI Jing, MENG Xiangfu. Document Classification Method Based on Context Awareness and Hierarchical Attention Network [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(2): 305-314. |
[5] | XING Changzheng, GUO Yalan, ZHANG Quangui, ZHAO Hongbao. Recommendation Method Integrating Review Text Hierarchical Attention with Time Information [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(11): 2222-2232. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/