Journal of Frontiers of Computer Science and Technology ›› 2022, Vol. 16 ›› Issue (5): 1155-1168.DOI: 10.3778/j.issn.1673-9418.2011043
• Graphics and Image • Previous Articles Next Articles
Received:
2020-11-13
Revised:
2021-01-20
Online:
2022-05-01
Published:
2022-05-19
About author:
HE Yaru, born in 1994, M.S. candidate, student member of CCF. Her research interest is computer vision.Supported by:
通讯作者:
+ E-mail: ghw8601@163.com作者简介:
何亚茹(1994—),女,河北石家庄人,硕士研究生,CCF学生会员,主要研究方向为计算机视觉。基金资助:
CLC Number:
HE Yaru, GE Hongwei. Image Segmentation Algorithm Combining Visual Salient Regions and Active Contour[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(5): 1155-1168.
何亚茹, 葛洪伟. 视觉显著区域和主动轮廓结合的图像分割算法[J]. 计算机科学与探索, 2022, 16(5): 1155-1168.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2011043
Image | | | | | | | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
| 3 000.000 0 | 3 000.000 0 | 0.002 0 | 0.001 0 | 0.000 9 | 0.001 1 | 0.001 0 | 0.001 0 | 0.005 9 | 0.005 9 | 0.001 2 | 0.000 8 |
| 590.000 0 | 3 000.000 0 | 0.001 2 | 0.001 1 | 0.001 3 | 0.001 3 | 0.001 0 | 0.001 0 | 0.005 6 | 0.005 3 | 0.000 8 | 0.000 7 |
| 4.000 0 | 4.200 0 | 0.002 1 | 0.004 4 | 0.002 6 | 0.004 5 | 0.002 0 | 0.003 5 | 0.011 0 | 0.012 0 | 0.001 9 | 0.004 7 |
| 1.500 0 | 5.500 0 | 0.001 7 | 0.001 6 | 0.002 7 | 0.001 9 | 0.003 5 | 0.003 6 | 0.008 7 | 0.008 6 | 0.002 6 | 0.002 8 |
| 1.200 0 | 15.000 0 | 0.180 0 | 0.012 0 | 0.055 0 | 0.007 6 | 0.035 0 | 0.013 0 | 0.120 0 | 0.120 0 | 0.021 0 | 0.011 0 |
| 4.100 0 | 0.500 0 | 0.110 0 | 0.160 0 | 0.180 0 | 0.099 0 | 0.140 0 | 0.140 0 | 0.290 0 | 0.370 0 | 0.021 0 | 0.021 0 |
Table 1 Value of v, v 1 to v 5 in each model segmenting sample images on Fig.6 and Fig.7
Image | | | | | | | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
| 3 000.000 0 | 3 000.000 0 | 0.002 0 | 0.001 0 | 0.000 9 | 0.001 1 | 0.001 0 | 0.001 0 | 0.005 9 | 0.005 9 | 0.001 2 | 0.000 8 |
| 590.000 0 | 3 000.000 0 | 0.001 2 | 0.001 1 | 0.001 3 | 0.001 3 | 0.001 0 | 0.001 0 | 0.005 6 | 0.005 3 | 0.000 8 | 0.000 7 |
| 4.000 0 | 4.200 0 | 0.002 1 | 0.004 4 | 0.002 6 | 0.004 5 | 0.002 0 | 0.003 5 | 0.011 0 | 0.012 0 | 0.001 9 | 0.004 7 |
| 1.500 0 | 5.500 0 | 0.001 7 | 0.001 6 | 0.002 7 | 0.001 9 | 0.003 5 | 0.003 6 | 0.008 7 | 0.008 6 | 0.002 6 | 0.002 8 |
| 1.200 0 | 15.000 0 | 0.180 0 | 0.012 0 | 0.055 0 | 0.007 6 | 0.035 0 | 0.013 0 | 0.120 0 | 0.120 0 | 0.021 0 | 0.011 0 |
| 4.100 0 | 0.500 0 | 0.110 0 | 0.160 0 | 0.180 0 | 0.099 0 | 0.140 0 | 0.140 0 | 0.290 0 | 0.370 0 | 0.021 0 | 0.021 0 |
Image | SPF | SPF* | RSF | RSF* | LGIF | LGIF* | ACML | ACML* | LPF | LPF* | RBHM | Ours |
---|---|---|---|---|---|---|---|---|---|---|---|---|
| 3.7 | 6.2 | 14.1 | 3.7 | 8.4 | 4.4 | 4.4 | 3.9 | 1.6 | 1.4 | 26.6 | 6.8 |
| 5.5 | 2.3 | 3.1 | 1.8 | 13.0 | 1.9 | 3.1 | 2.2 | 1.1 | 1.1 | 5.8 | 2.1 |
| 4.8 | 2.2 | 6.3 | 1.4 | 6.3 | 2.2 | 7.2 | 0.8 | 8.6 | 1.3 | 7.2 | 0.7 |
| 13.7 | 5.3 | 20.1 | 8.7 | 60.1 | 9.0 | 24.3 | 12.6 | 16.5 | 11.8 | 11.7 | 19.2 |
| 25.4 | 2.6 | 251.3 | 2.2 | 207.6 | 2.4 | 215.9 | 0.8 | 71.1 | 13.5 | 226.4 | 1.4 |
| 10.2 | 2.5 | 54.0 | 29.0 | 65.6 | 29.2 | 47.8 | 30.1 | 13.7 | 13.7 | 41.4 | 24.1 |
均值 | 10.6 | 3.5 | 58.2 | 7.8 | 60.2 | 8.2 | 50.5 | 8.4 | 18.8 | 7.1 | 53.2 | 9.1 |
Table 2 Iteration time required for six models using different initialized contours s
Image | SPF | SPF* | RSF | RSF* | LGIF | LGIF* | ACML | ACML* | LPF | LPF* | RBHM | Ours |
---|---|---|---|---|---|---|---|---|---|---|---|---|
| 3.7 | 6.2 | 14.1 | 3.7 | 8.4 | 4.4 | 4.4 | 3.9 | 1.6 | 1.4 | 26.6 | 6.8 |
| 5.5 | 2.3 | 3.1 | 1.8 | 13.0 | 1.9 | 3.1 | 2.2 | 1.1 | 1.1 | 5.8 | 2.1 |
| 4.8 | 2.2 | 6.3 | 1.4 | 6.3 | 2.2 | 7.2 | 0.8 | 8.6 | 1.3 | 7.2 | 0.7 |
| 13.7 | 5.3 | 20.1 | 8.7 | 60.1 | 9.0 | 24.3 | 12.6 | 16.5 | 11.8 | 11.7 | 19.2 |
| 25.4 | 2.6 | 251.3 | 2.2 | 207.6 | 2.4 | 215.9 | 0.8 | 71.1 | 13.5 | 226.4 | 1.4 |
| 10.2 | 2.5 | 54.0 | 29.0 | 65.6 | 29.2 | 47.8 | 30.1 | 13.7 | 13.7 | 41.4 | 24.1 |
均值 | 10.6 | 3.5 | 58.2 | 7.8 | 60.2 | 8.2 | 50.5 | 8.4 | 18.8 | 7.1 | 53.2 | 9.1 |
Image | | | | | | |
---|---|---|---|---|---|---|
A | 3 000.000 0 | 0.019 0 | 0.014 0 | 0.029 0 | 0.057 0 | 0.002 9 |
B | 1.600 0 | 0.000 3 | 0.000 4 | 0.000 5 | 0.000 5 | 0.000 4 |
C | 190.000 0 | 0.000 4 | 0.003 1 | 0.001 4 | 0.005 5 | 0.002 6 |
D | 0.500 0 | 0.002 3 | 0.000 7 | 0.008 8 | 0.009 1 | 0.003 1 |
E | 0.800 0 | 0.028 0 | 0.033 0 | 0.045 0 | 0.050 0 | 0.012 0 |
F | 7.700 0 | 0.320 0 | 0.160 0 | 0.400 0 | 1.000 0 | 0.120 0 |
G | 2.500 0 | 0.220 0 | 0.280 0 | 0.210 0 | 0.140 0 | 0.089 0 |
H | 1.900 0 | 0.008 4 | 0.014 0 | 0.005 4 | 0.016 0 | 0.001 6 |
I | 3.000 0 | 0.064 0 | 0.091 0 | 0.086 0 | 0.200 0 | 0.004 9 |
J | 31.000 0 | 0.045 0 | 0.044 0 | 0.021 0 | 0.090 0 | 0.001 6 |
Table 3 Value of v, v 1 to v 5 in each model segmenting sample images on Fig.8
Image | | | | | | |
---|---|---|---|---|---|---|
A | 3 000.000 0 | 0.019 0 | 0.014 0 | 0.029 0 | 0.057 0 | 0.002 9 |
B | 1.600 0 | 0.000 3 | 0.000 4 | 0.000 5 | 0.000 5 | 0.000 4 |
C | 190.000 0 | 0.000 4 | 0.003 1 | 0.001 4 | 0.005 5 | 0.002 6 |
D | 0.500 0 | 0.002 3 | 0.000 7 | 0.008 8 | 0.009 1 | 0.003 1 |
E | 0.800 0 | 0.028 0 | 0.033 0 | 0.045 0 | 0.050 0 | 0.012 0 |
F | 7.700 0 | 0.320 0 | 0.160 0 | 0.400 0 | 1.000 0 | 0.120 0 |
G | 2.500 0 | 0.220 0 | 0.280 0 | 0.210 0 | 0.140 0 | 0.089 0 |
H | 1.900 0 | 0.008 4 | 0.014 0 | 0.005 4 | 0.016 0 | 0.001 6 |
I | 3.000 0 | 0.064 0 | 0.091 0 | 0.086 0 | 0.200 0 | 0.004 9 |
J | 31.000 0 | 0.045 0 | 0.044 0 | 0.021 0 | 0.090 0 | 0.001 6 |
Image | SPF* | RSF* | LGIF* | ACML* | LPF* | Ours | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
DSC | JSI | DSC | JSI | DSC | JSI | DSC | JSI | DSC | JSI | DSC | JSI | |
A | 0.893 7 | 0.807 9 | 0.912 2 | 0.838 5 | 0.913 4 | 0.840 6 | 0.912 1 | 0.838 3 | 0.911 3 | 0.837 0 | 0.926 8 | 0.863 6 |
B | 0.850 9 | 0.740 5 | 0.889 3 | 0.800 6 | 0.891 4 | 0.804 0 | 0.894 3 | 0.808 9 | 0.894 4 | 0.808 9 | 0.905 9 | 0.828 0 |
C | 0.889 2 | 0.800 4 | 0.945 5 | 0.896 7 | 0.945 1 | 0.896 0 | 0.942 9 | 0.892 0 | 0.942 7 | 0.891 6 | 0.959 7 | 0.922 5 |
D | 0.901 9 | 0.821 4 | 0.905 6 | 0.827 4 | 0.904 9 | 0.826 3 | 0.905 2 | 0.826 9 | 0.905 9 | 0.828 0 | 0.925 2 | 0.860 9 |
E | 0.924 5 | 0.859 6 | 0.928 0 | 0.865 6 | 0.929 1 | 0.867 6 | 0.928 4 | 0.866 4 | 0.926 6 | 0.863 2 | 0.937 5 | 0.882 4 |
F | 0.926 7 | 0.863 4 | 0.935 7 | 0.879 2 | 0.934 0 | 0.876 2 | 0.935 1 | 0.878 1 | 0.942 5 | 0.891 2 | 0.967 1 | 0.936 3 |
G | 0.859 2 | 0.753 2 | 0.889 7 | 0.801 3 | 0.887 3 | 0.797 4 | 0.889 7 | 0.801 3 | 0.267 3 | 0.154 3 | 0.934 6 | 0.877 2 |
H | 0.833 5 | 0.714 5 | 0.870 0 | 0.769 9 | 0.860 5 | 0.755 1 | 0.900 4 | 0.818 8 | 0.868 6 | 0.767 8 | 0.912 5 | 0.839 1 |
I | 0.925 2 | 0.860 8 | 0.938 4 | 0.883 9 | 0.935 4 | 0.878 6 | 0.938 0 | 0.883 3 | 0.915 1 | 0.843 5 | 0.943 4 | 0.892 8 |
J | 0.869 2 | 0.768 7 | 0.863 7 | 0.760 2 | 0.869 8 | 0.769 6 | 0.892 9 | 0.806 5 | 0.603 4 | 0.432 0 | 0.921 0 | 0.853 6 |
均值 | 0.887 4 | 0.799 0 | 0.907 8 | 0.832 3 | 0.907 1 | 0.831 1 | 0.913 9 | 0.842 1 | 0.817 8 | 0.731 8 | 0.933 4 | 0.875 6 |
Table 4 Segmentation accuracy of six models on Fig.8
Image | SPF* | RSF* | LGIF* | ACML* | LPF* | Ours | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
DSC | JSI | DSC | JSI | DSC | JSI | DSC | JSI | DSC | JSI | DSC | JSI | |
A | 0.893 7 | 0.807 9 | 0.912 2 | 0.838 5 | 0.913 4 | 0.840 6 | 0.912 1 | 0.838 3 | 0.911 3 | 0.837 0 | 0.926 8 | 0.863 6 |
B | 0.850 9 | 0.740 5 | 0.889 3 | 0.800 6 | 0.891 4 | 0.804 0 | 0.894 3 | 0.808 9 | 0.894 4 | 0.808 9 | 0.905 9 | 0.828 0 |
C | 0.889 2 | 0.800 4 | 0.945 5 | 0.896 7 | 0.945 1 | 0.896 0 | 0.942 9 | 0.892 0 | 0.942 7 | 0.891 6 | 0.959 7 | 0.922 5 |
D | 0.901 9 | 0.821 4 | 0.905 6 | 0.827 4 | 0.904 9 | 0.826 3 | 0.905 2 | 0.826 9 | 0.905 9 | 0.828 0 | 0.925 2 | 0.860 9 |
E | 0.924 5 | 0.859 6 | 0.928 0 | 0.865 6 | 0.929 1 | 0.867 6 | 0.928 4 | 0.866 4 | 0.926 6 | 0.863 2 | 0.937 5 | 0.882 4 |
F | 0.926 7 | 0.863 4 | 0.935 7 | 0.879 2 | 0.934 0 | 0.876 2 | 0.935 1 | 0.878 1 | 0.942 5 | 0.891 2 | 0.967 1 | 0.936 3 |
G | 0.859 2 | 0.753 2 | 0.889 7 | 0.801 3 | 0.887 3 | 0.797 4 | 0.889 7 | 0.801 3 | 0.267 3 | 0.154 3 | 0.934 6 | 0.877 2 |
H | 0.833 5 | 0.714 5 | 0.870 0 | 0.769 9 | 0.860 5 | 0.755 1 | 0.900 4 | 0.818 8 | 0.868 6 | 0.767 8 | 0.912 5 | 0.839 1 |
I | 0.925 2 | 0.860 8 | 0.938 4 | 0.883 9 | 0.935 4 | 0.878 6 | 0.938 0 | 0.883 3 | 0.915 1 | 0.843 5 | 0.943 4 | 0.892 8 |
J | 0.869 2 | 0.768 7 | 0.863 7 | 0.760 2 | 0.869 8 | 0.769 6 | 0.892 9 | 0.806 5 | 0.603 4 | 0.432 0 | 0.921 0 | 0.853 6 |
均值 | 0.887 4 | 0.799 0 | 0.907 8 | 0.832 3 | 0.907 1 | 0.831 1 | 0.913 9 | 0.842 1 | 0.817 8 | 0.731 8 | 0.933 4 | 0.875 6 |
Image | SPF* | RSF* | LGIF* | ACML* | LPF* | Ours |
---|---|---|---|---|---|---|
A | 19.65 | 18.97 | 18.00 | 18.97 | 19.42 | 9.85 |
B | 25.94 | 14.00 | 14.00 | 14.00 | 4.00 | 13.00 |
C | 22.56 | 6.40 | 6.40 | 19.03 | 19.03 | 5.39 |
D | 10.63 | 6.32 | 6.32 | 6.32 | 6.32 | 6.32 |
E | 18.44 | 8.25 | 7.81 | 7.81 | 8.25 | 2.83 |
F | 26.00 | 26.25 | 26.25 | 26.25 | 26.25 | 5.00 |
G | 10.77 | 11.18 | 11.18 | 11.18 | 173.59 | 8.94 |
H | 84.01 | 83.73 | 30.15 | 9.06 | 30.15 | 9.22 |
I | 7.00 | 23.02 | 34.54 | 8.94 | 16.03 | 5.10 |
J | 60.21 | 80.31 | 80.31 | 85.62 | 85.38 | 10.00 |
均值 | 28.52 | 27.84 | 23.50 | 20.72 | 38.84 | 7.57 |
Table 5 Segmentation evaluation of six models on Fig.8 (HD)
Image | SPF* | RSF* | LGIF* | ACML* | LPF* | Ours |
---|---|---|---|---|---|---|
A | 19.65 | 18.97 | 18.00 | 18.97 | 19.42 | 9.85 |
B | 25.94 | 14.00 | 14.00 | 14.00 | 4.00 | 13.00 |
C | 22.56 | 6.40 | 6.40 | 19.03 | 19.03 | 5.39 |
D | 10.63 | 6.32 | 6.32 | 6.32 | 6.32 | 6.32 |
E | 18.44 | 8.25 | 7.81 | 7.81 | 8.25 | 2.83 |
F | 26.00 | 26.25 | 26.25 | 26.25 | 26.25 | 5.00 |
G | 10.77 | 11.18 | 11.18 | 11.18 | 173.59 | 8.94 |
H | 84.01 | 83.73 | 30.15 | 9.06 | 30.15 | 9.22 |
I | 7.00 | 23.02 | 34.54 | 8.94 | 16.03 | 5.10 |
J | 60.21 | 80.31 | 80.31 | 85.62 | 85.38 | 10.00 |
均值 | 28.52 | 27.84 | 23.50 | 20.72 | 38.84 | 7.57 |
[1] |
HAN B, WU Y. Active contours driven by global and local weighted signed pressure force for image segmentation[J]. Pattern Recognition, 2019, 88: 715-728.
DOI URL |
[2] |
SOOMRO S, MUNIR A, CHOI K N, et al. Fuzzy C-means clustering based active contour model driven by edge scaled region information[J]. Expert Systems with Applications, 2019, 120: 387-396.
DOI URL |
[3] |
KASS M, WITKIN A, TERZOPOULOS D, et al. Snakes: active contour models[J]. International Journal of Computer Vision, 1988, 1(4): 321-331.
DOI URL |
[4] | GAO S B, YANG J. Saliency-seeded localizing region-based active contour for automatic natural object segmentation[C]// Proceedings of the 21st International Conference on Pattern Recognition, Tsukuba, Nov 11-15, 2012. Washington: IEEE Computer Society, 2012: 3644-3647. |
[5] | CASELLES V, CATTE F, COLL T, et al. A geometric model for active contours in image processing[J]. Numerische Mathe-matik, 1993, 66(1): 1-31. |
[6] |
CHAN T F, VESE L A. Active contours without edges[J]. IEEE Transactions on Image Processing, 2001, 10(2): 266-277.
DOI URL |
[7] | LI C M, KAO C Y, GORE J C, et al. Minimization of region-scalable fitting energy for image segmentation[J]. IEEE Trans-actions on Image Processing, 2008, 17(10): 1940-1949. |
[8] |
DING K, XIAO L F, WENG G R. Active contours driven by local prefitting energy for fast image segmentation[J]. Pattern Recognition Letters, 2018, 104: 29-36.
DOI URL |
[9] | ZHANG K H, ZHANG L, SONG H H, et al. Active contours with selective local or global segmentation: a new formulation and level set method[J]. Image & Vision Computing, 2010, 28(4): 668-676. |
[10] | WANG L, LI C M, SUN Q S, et al. Active contours driven by local and global intensity fitting energy with application to brain MR image segmentation[J]. Computerized Medical Imaging & Graphics, 2009, 33(7): 520-531. |
[11] | 赵杰, 祁永梅, 潘正勇. 融合模糊全局和双核局部信息的活动轮廓模型[J]. 小型微型计算机系统, 2014, 35(3): 663-666. |
ZHAO J, QI Y M, PAN Z Y. Active contour model of combining fuzzy global and dual-core local information[J]. Journal of Chinese Computer Systems, 2014, 35(3): 663-666. | |
[12] |
DING K Y, XIAO L F, WENG G R. Active contours driven by region-scalable fitting and optimized Laplacian of Gaussian energy for image segmentation[J]. Signal Processing, 2017, 134: 224-233.
DOI URL |
[13] | 陶永鹏, 景雨, 顼聪. 随机森林和水平集的椎骨CT分割方法[J]. 小型微型计算机系统, 2019, 40(6): 1336-1339. |
TAO Y P, JING Y, XU C. Ivertebra CT segmentation method based on random forest and Chan Vese[J]. Journal of Chinese Computer Systems, 2019, 40(6): 1336-1339. | |
[14] | LI B N, CHUI C K, CHANG S, et al. Integrating spatial fuzzy clustering with level set methods for automated medical image segmentation[J]. Computers in Biology & Medicine, 2011, 41(1): 1-10. |
[15] |
YANG Y Y, WANG R, FENG C. Level set formulation for automatic medical image segmentation based on fuzzy clus-tering[J]. Signal Processing Image Communication, 2020, 87: 115907.
DOI URL |
[16] |
FU H Z, CAO X C, ZHUO W T. Cluster-based co-saliency detection[J]. IEEE Transactions on Image Processing, 2013, 22(10): 3766-3778.
DOI URL |
[17] |
YUAN Y, LI C, KIM J, et al. Reversion correction and regu-larized random walk ranking for saliency detection[J]. IEEE Transactions on Image Processing, 2018, 27(3): 1311-1322.
DOI URL |
[18] | 林喜兰, 陈秀宏, 肖林云. 局部信息熵的快速混合测地区域活动轮廓模型[J]. 计算机科学与探索, 2016, 10(9): 1332-1340. |
LIN X L, CHEN X H, XIAO L Y. Fast hybrid geodesic region active contour model of local entropy[J]. Journal of Frontiers of Computer Science and Technology, 2016, 10(9): 1332-1340. | |
[19] |
LI C M, XU C Y, GUI C F, et al. Distance regularized level set evolution and its application to image segmentation[J]. IEEE Transactions on Image Processing, 2010, 19(12): 3243-3254.
DOI URL |
[20] |
KIMMEL R, BRUCKSTEIN A M. Regularized Laplacian zero crossings as optimal edge integrators[J]. International Journal of Computer Vision, 2003, 53(3): 225-243.
DOI URL |
[21] |
ZHOU L, YANG Z, ZHOU Z, et al. Salient region detection using diffusion process on a two-layer sparse graph[J]. IEEE Transactions on Image Processing, 2017, 26(12): 5882-5894.
DOI URL |
[22] |
ZONG J J, QIUTS, LI W D, et al. Automatic ultrasound image segmentation based on local entropy and active contour model[J]. Computers & Mathematics with Applications, 2019, 78: 929-943.
DOI URL |
[23] |
CHENG Y. Mean shift, mode seeking and clustering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995, 17(8): 790-799.
DOI URL |
[24] | FU Y, CHENG J, LI Z L, et al. Saliency cuts: an automatic approach to object segmentation[C]// Proceedings of the 19th International Conference on Pattern Recognition, Tampa, Dec 8-11, 2008. Washington: IEEE Computer Society, 2008: 1-4. |
[25] |
BAI X F, WANG W J. Saliency-SVM: an automatic approach for image segmentation[J]. Neurocomputing, 2014, 136(20): 243-255.
DOI URL |
[26] | 李社蕾, 黄梦醒. 改进几何活动轮廓模型的水下图像分割算法研究[J]. 小型微型计算机系统, 2019, 40(3): 671-675. |
LI S L, HUANG M X. Research of underwater image segmentation algorithm based on the improved geometric active contour models[J]. Journal of Chinese Computer Systems, 2019, 40(3): 671-675. | |
[27] | ALPERT S, GALUN M, BRANDT A, et al. Image segmenta-tion by probabilistic bottom-up aggregation and cue integration[C]// Proceedings of the 2007 IEEE Computer Society Confer-ence on Computer Vision and Pattern Recognition, Minnea-polis, Jun 18-23, 2007. Washington: IEEE Computer Society, 2007: 1-8. |
[28] |
温立民, 巨永锋, 闫茂德. 基于自然统计特征分布的交通图像雾浓度检测[J]. 电子学报, 2017, 45(8): 1888-1895.
DOI |
WEN L M, JU Y F, YAN M D. Inspection of fog density for traffic image based on distribution characteristics of natural statistics[J]. Acta Electronica Sinica, 2017, 45(8): 1888-1895. |
[1] | XIE Juanying, ZHANG Kaiyun. XR-MSF-Unet: Automatic Segmentation Model for COVID-19 Lung CT Images [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(8): 1850-1864. |
[2] | SONG Shujie, CUI Zhenchao, CHEN Liping, CHEN Xiangyang. Fundus Vessel Segmentation Algorithm Based on Multi-feature Fusion Neural Network [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(12): 2401-2412. |
[3] | QIAN Baoxin, XIAO Zhiyong, SONG Wei. Application of Improved Convolutional Neural Network in Lung Image Segmentation [J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(8): 1358-1367. |
[4] | LIU Chen, XIAO Zhiyong, DU Nianmao. Application of Improved Convolutional Neural Network in Medical Image Seg- mentation [J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(9): 1593-1603. |
[5] | SHI Dongli, LI Qiang+, GUAN Xin. Brain Tumor Image Segmentation Algorithm Based on Convolution Neural Network and Fuzzy Inference Syste [J]. Journal of Frontiers of Computer Science and Technology, 2018, 12(4): 608-617. |
[6] | ZHANG Jingmao, SHEN Yanxia. Multiscale Single Feature Spectral Segmentation [J]. Journal of Frontiers of Computer Science and Technology, 2018, 12(3): 442-451. |
[7] | HAN Chenghui, WANG Huiqin, HU Yan. Enhancement and Segmentation Algorithm Study for Low Contrast Fire Image [J]. Journal of Frontiers of Computer Science and Technology, 2018, 12(1): 163-170. |
[8] | ZHANG Na, WANG Huiqin, HU Yan. Smoke Image Segmentation Algorithm Based on Rough Set and Region Growing [J]. Journal of Frontiers of Computer Science and Technology, 2017, 11(8): 1296-1304. |
[9] | LIN Xilan, CHEN Xiuhong, XIAO Linyun. Fast Hybrid Geodesic Region Active Contour Model of Local Entropy [J]. Journal of Frontiers of Computer Science and Technology, 2016, 10(9): 1332-1340. |
[10] | YAO Longyang, ZHANG Qinghua, HU Shuaipeng1, ZHANG Qiang. Rough Entropy for Image Segmentation Based on Approximation Sets and Particle Swarm Optimization [J]. Journal of Frontiers of Computer Science and Technology, 2016, 10(5): 699-708. |
[11] | ZHANG Xinming, TU Qiang, YIN Xinxin. Efficient BBO Algorithm Based on Hybrid Migration and Its Application to Image Segmentation [J]. Journal of Frontiers of Computer Science and Technology, 2016, 10(10): 1459-1468. |
[12] | HE Jianfeng, FU Zeng, YI Sanli, XIANG Yan, CUI Rui. Image Segmentation with Multi-Threshold of Gray-Level & Gradient-Magnitude Entropy Based on Genetic Algorithm [J]. Journal of Frontiers of Computer Science and Technology, 2015, 9(8): 995-1003. |
[13] | CAI Qiang, LIU Yaqi, CAO Jian, MAO Dianhui, LI Haisheng. Interactive Image Segmentation Algorithm Based on SLIC and Delaunay Graph Cut [J]. Journal of Frontiers of Computer Science and Technology, 2015, 9(4): 482-490. |
[14] | LIU Liqun, HUO Jiuyuan, WANG Lianguo, HAN Junying. Harmony Search Algorithm Based on Shuffled Frog Leaping and Bacterial Foraging and Its Application in Image [J]. Journal of Frontiers of Computer Science and Technology, 2015, 9(1): 119-128. |
[15] | BAI Xuefei, WANG Wenjian. Chan-Vese Model with Adaptive Initial Contour for Image Segmentation [J]. Journal of Frontiers of Computer Science and Technology, 2013, 7(12): 1115-1124. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/