Journal of Frontiers of Computer Science and Technology ›› 2022, Vol. 16 ›› Issue (7): 1529-1542.DOI: 10.3778/j.issn.1673-9418.2101032
• Service Computing • Previous Articles Next Articles
WANG Xuechun1, LYU Shengkai1, WU Hao2, HE Peng1,3,+(), ZENG Cheng1
Received:
2021-01-07
Revised:
2021-03-04
Online:
2022-07-01
Published:
2021-03-12
Supported by:
王雪纯1, 吕晟凯1, 吴浩2, 何鹏1,3,+(), 曾诚1
作者简介:
王雪纯(1996—),女,湖北十堰人,硕士研究生,主要研究方向为表示学习、神经网络、服务计算。 基金资助:
CLC Number:
WANG Xuechun, LYU Shengkai, WU Hao, HE Peng, ZENG Cheng. Research on Service Recommendation Method of Multi-network Hybrid Embed-ding Learning[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(7): 1529-1542.
王雪纯, 吕晟凯, 吴浩, 何鹏, 曾诚. 多网络混合嵌入学习的服务推荐方法研究[J]. 计算机科学与探索, 2022, 16(7): 1529-1542.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2101032
名称 | 用户 | 服务 | 评分数据 | 社交关系 |
---|---|---|---|---|
Douban Movie | 13 367 | 12 677 | 1 068 278 | 4 085 |
Yelp | 16 239 | 14 284 | 198 397 | 158 590 |
Movielens | 1 370 | 2 682 | 100 000 | 47 150 |
Table 1 Experimental dataset
名称 | 用户 | 服务 | 评分数据 | 社交关系 |
---|---|---|---|---|
Douban Movie | 13 367 | 12 677 | 1 068 278 | 4 085 |
Yelp | 16 239 | 14 284 | 198 397 | 158 590 |
Movielens | 1 370 | 2 682 | 100 000 | 47 150 |
名称 | 网络 | 节点数 | 连边数 |
---|---|---|---|
Douban Movie | 用户同质信息网络 | 10 279 | 78 311 |
服务同质信息网络 | 8 207 | 63 483 | |
用户社交网络 | 9 032 | 3 357 | |
Yelp | 同质信息网络 | 13 279 | 87 137 |
服务同质信息网络 | 12 540 | 69 257 | |
用户社交网络 | 14 367 | 98 573 | |
Movielens | 用户同质信息网络 | 1 170 | 23 367 |
服务同质信息网络 | 2 194 | 17 621 | |
用户社交网络 | 1 037 | 45 889 |
Table 2 Data statistics of information network
名称 | 网络 | 节点数 | 连边数 |
---|---|---|---|
Douban Movie | 用户同质信息网络 | 10 279 | 78 311 |
服务同质信息网络 | 8 207 | 63 483 | |
用户社交网络 | 9 032 | 3 357 | |
Yelp | 同质信息网络 | 13 279 | 87 137 |
服务同质信息网络 | 12 540 | 69 257 | |
用户社交网络 | 14 367 | 98 573 | |
Movielens | 用户同质信息网络 | 1 170 | 23 367 |
服务同质信息网络 | 2 194 | 17 621 | |
用户社交网络 | 1 037 | 45 889 |
Dataset | Train rate | Metrics | UPCC | BPR | FMHIN | Sorec | SemRec | MVIR | CPLR | MNHER |
---|---|---|---|---|---|---|---|---|---|---|
Yelp | 80% | F1@10 | 0.148 | 0.124 | 0.189 | 0.180 | 0.216 | 0.295 | 0.317 | 0.396 |
NDGG@10 | 0.146 | 0.132 | 0.190 | 0.190 | 0.206 | 0.244 | 0.270 | 0.271 | ||
MAP@10 | 0.167 | 0.076 | 0.132 | 0.165 | 0.209 | 0.350 | 0.254 | 0.358 | ||
MRR@10 | 0.393 | 0.190 | 0.273 | 0.260 | 0.382 | 0.503 | 0.442 | 0.552 | ||
60% | F1@10 | 0.145 | 0.122 | 0.156 | 0.177 | 0.189 | 0.289 | 0.321 | 0.389 | |
NDGG@10 | 0.143 | 0.129 | 0.157 | 0.186 | 0.202 | 0.217 | 0.204 | 0.243 | ||
MAP@10 | 0.151 | 0.075 | 0.067 | 0.064 | 0.117 | 0.164 | 0.221 | 0.289 | ||
MRR@10 | 0.386 | 0.186 | 0.552 | 0.549 | 0.483 | 0.625 | 0.515 | 0.631 | ||
40% | F1@10 | 0.136 | 0.118 | 0.149 | 0.171 | 0.184 | 0.234 | 0.311 | 0.377 | |
NDGG@10 | 0.138 | 0.125 | 0.182 | 0.181 | 0.195 | 0.240 | 0.216 | 0.258 | ||
MAP@10 | 0.134 | 0.073 | 0.064 | 0.062 | 0.113 | 0.207 | 0.216 | 0.283 | ||
MRR@10 | 0.374 | 0.181 | 0.526 | 0.532 | 0.468 | 0.530 | 0.534 | 0.680 | ||
20% | F1@10 | 0.132 | 1.104 | 0.164 | 0.161 | 0.172 | 0.262 | 0.292 | 0.353 | |
NDGG@10 | 0.130 | 0.117 | 0.103 | 0.108 | 0.183 | 0.219 | 0.183 | 0.241 | ||
MAP@10 | 0.083 | 0.068 | 0.060 | 0.058 | 0.106 | 0.113 | 0.220 | 0.263 | ||
MRR@10 | 0.350 | 0.169 | 0.458 | 0.499 | 0.438 | 0.500 | 0.417 | 0.508 | ||
Douban Movie | 80% | F1@10 | 0.108 | 0.119 | 0.152 | 0.150 | 0.170 | 0.260 | 0.345 | 0.319 |
NDGG@10 | 0.118 | 0.043 | 0.257 | 0.272 | 0.173 | 0.222 | 0.393 | 0.428 | ||
MAP@10 | 0.095 | 0.114 | 0.071 | 0.075 | 0.105 | 0.186 | 0.161 | 0.239 | ||
MRR@10 | 0.494 | 0.242 | 0.439 | 0.447 | 0.552 | 0.605 | 0.524 | 0.655 | ||
60% | F1@10 | 0.131 | 0.113 | 0.143 | 0.143 | 0.161 | 0.353 | 0.337 | 0.299 | |
NDGG@10 | 0.112 | 0.041 | 0.214 | 0.258 | 0.165 | 0.190 | 0.199 | 0.236 | ||
MAP@10 | 0.072 | 0.108 | 0.051 | 0.072 | 0.100 | 0.170 | 0.135 | 0.194 | ||
MRR@10 | 0.316 | 0.235 | 0.331 | 0.336 | 0.426 | 0.502 | 0.492 | 0.615 | ||
40% | F1@10 | 0.086 | 0.106 | 0.156 | 0.149 | 0.160 | 0.293 | 0.296 | 0.338 | |
NDGG@10 | 0.100 | 0.192 | 0.052 | 0.054 | 0.163 | 0.199 | 0.345 | 0.406 | ||
MAP@10 | 0.089 | 0.053 | 0.144 | 0.142 | 0.099 | 0.168 | 0.173 | 0.192 | ||
MRR@10 | 0.384 | 0.225 | 0.365 | 0.416 | 0.513 | 0.632 | 0.554 | 0.693 | ||
20% | F1@10 | 0.177 | 0.101 | 0.145 | 0.142 | 0.153 | 0.281 | 0.238 | 0.327 | |
NDGG@10 | 0.095 | 0.184 | 0.047 | 0.052 | 0.156 | 0.211 | 0.196 | 0.245 | ||
MAP@10 | 0.085 | 0.051 | 0.130 | 0.136 | 0.095 | 0.169 | 0.147 | 0.184 | ||
MRR@10 | 0.393 | 0.215 | 0.318 | 0.398 | 0.491 | 0.604 | 0.516 | 0.633 | ||
Movielens | 80% | F1@10 | 0.105 | 0.112 | 0.111 | 0.119 | 0.143 | 0.209 | 0.205 | 0.282 |
NDGG@10 | 0.109 | 0.105 | 0.103 | 0.108 | 0.102 | 0.179 | 0.206 | 0.257 | ||
MAP@10 | 0.059 | 0.056 | 0.042 | 0.046 | 0.062 | 0.106 | 0.109 | 0.136 | ||
MRR@10 | 0.169 | 0.181 | 0.208 | 0.293 | 0.238 | 0.293 | 0.272 | 0.469 | ||
60% | F1@10 | 0.107 | 0.109 | 0.114 | 0.116 | 0.071 | 0.123 | 0.229 | 0.273 | |
NDGG@10 | 0.076 | 0.102 | 0.109 | 0.105 | 0.061 | 0.215 | 0.180 | 0.250 | ||
MAP@10 | 0.033 | 0.054 | 0.047 | 0.045 | 0.030 | 0.068 | 0.125 | 0.132 | ||
MRR@10 | 0.167 | 0.172 | 0.227 | 0.279 | 0.226 | 0.230 | 0.259 | 0.446 | ||
40% | F1@10 | 0.136 | 0.104 | 0.106 | 0.111 | 0.068 | 0.194 | 0.220 | 0.262 | |
NDGG@10 | 0.109 | 0.098 | 0.094 | 0.103 | 0.059 | 0.138 | 0.192 | 0.239 | ||
MAP@10 | 0.037 | 0.056 | 0.042 | 0.045 | 0.030 | 0.063 | 0.109 | 0.149 | ||
MRR@10 | 0.159 | 0.207 | 0.216 | 0.227 | 0.224 | 0.291 | 0.237 | 0.442 | ||
20% | F1@10 | 0.126 | 0.100 | 0.103 | 0.106 | 0.065 | 0.186 | 0.221 | 0.251 | |
NDGG@10 | 0.098 | 0.093 | 0.082 | 0.096 | 0.056 | 0.181 | 0.193 | 0.229 | ||
MAP@10 | 0.046 | 0.047 | 0.050 | 0.038 | 0.025 | 0.091 | 0.091 | 0.113 | ||
MRR@10 | 0.152 | 0.198 | 0.202 | 0.217 | 0.214 | 0.279 | 0.227 | 0.422 |
Table 3 Comparison of recommendation quality of different models on three datasets
Dataset | Train rate | Metrics | UPCC | BPR | FMHIN | Sorec | SemRec | MVIR | CPLR | MNHER |
---|---|---|---|---|---|---|---|---|---|---|
Yelp | 80% | F1@10 | 0.148 | 0.124 | 0.189 | 0.180 | 0.216 | 0.295 | 0.317 | 0.396 |
NDGG@10 | 0.146 | 0.132 | 0.190 | 0.190 | 0.206 | 0.244 | 0.270 | 0.271 | ||
MAP@10 | 0.167 | 0.076 | 0.132 | 0.165 | 0.209 | 0.350 | 0.254 | 0.358 | ||
MRR@10 | 0.393 | 0.190 | 0.273 | 0.260 | 0.382 | 0.503 | 0.442 | 0.552 | ||
60% | F1@10 | 0.145 | 0.122 | 0.156 | 0.177 | 0.189 | 0.289 | 0.321 | 0.389 | |
NDGG@10 | 0.143 | 0.129 | 0.157 | 0.186 | 0.202 | 0.217 | 0.204 | 0.243 | ||
MAP@10 | 0.151 | 0.075 | 0.067 | 0.064 | 0.117 | 0.164 | 0.221 | 0.289 | ||
MRR@10 | 0.386 | 0.186 | 0.552 | 0.549 | 0.483 | 0.625 | 0.515 | 0.631 | ||
40% | F1@10 | 0.136 | 0.118 | 0.149 | 0.171 | 0.184 | 0.234 | 0.311 | 0.377 | |
NDGG@10 | 0.138 | 0.125 | 0.182 | 0.181 | 0.195 | 0.240 | 0.216 | 0.258 | ||
MAP@10 | 0.134 | 0.073 | 0.064 | 0.062 | 0.113 | 0.207 | 0.216 | 0.283 | ||
MRR@10 | 0.374 | 0.181 | 0.526 | 0.532 | 0.468 | 0.530 | 0.534 | 0.680 | ||
20% | F1@10 | 0.132 | 1.104 | 0.164 | 0.161 | 0.172 | 0.262 | 0.292 | 0.353 | |
NDGG@10 | 0.130 | 0.117 | 0.103 | 0.108 | 0.183 | 0.219 | 0.183 | 0.241 | ||
MAP@10 | 0.083 | 0.068 | 0.060 | 0.058 | 0.106 | 0.113 | 0.220 | 0.263 | ||
MRR@10 | 0.350 | 0.169 | 0.458 | 0.499 | 0.438 | 0.500 | 0.417 | 0.508 | ||
Douban Movie | 80% | F1@10 | 0.108 | 0.119 | 0.152 | 0.150 | 0.170 | 0.260 | 0.345 | 0.319 |
NDGG@10 | 0.118 | 0.043 | 0.257 | 0.272 | 0.173 | 0.222 | 0.393 | 0.428 | ||
MAP@10 | 0.095 | 0.114 | 0.071 | 0.075 | 0.105 | 0.186 | 0.161 | 0.239 | ||
MRR@10 | 0.494 | 0.242 | 0.439 | 0.447 | 0.552 | 0.605 | 0.524 | 0.655 | ||
60% | F1@10 | 0.131 | 0.113 | 0.143 | 0.143 | 0.161 | 0.353 | 0.337 | 0.299 | |
NDGG@10 | 0.112 | 0.041 | 0.214 | 0.258 | 0.165 | 0.190 | 0.199 | 0.236 | ||
MAP@10 | 0.072 | 0.108 | 0.051 | 0.072 | 0.100 | 0.170 | 0.135 | 0.194 | ||
MRR@10 | 0.316 | 0.235 | 0.331 | 0.336 | 0.426 | 0.502 | 0.492 | 0.615 | ||
40% | F1@10 | 0.086 | 0.106 | 0.156 | 0.149 | 0.160 | 0.293 | 0.296 | 0.338 | |
NDGG@10 | 0.100 | 0.192 | 0.052 | 0.054 | 0.163 | 0.199 | 0.345 | 0.406 | ||
MAP@10 | 0.089 | 0.053 | 0.144 | 0.142 | 0.099 | 0.168 | 0.173 | 0.192 | ||
MRR@10 | 0.384 | 0.225 | 0.365 | 0.416 | 0.513 | 0.632 | 0.554 | 0.693 | ||
20% | F1@10 | 0.177 | 0.101 | 0.145 | 0.142 | 0.153 | 0.281 | 0.238 | 0.327 | |
NDGG@10 | 0.095 | 0.184 | 0.047 | 0.052 | 0.156 | 0.211 | 0.196 | 0.245 | ||
MAP@10 | 0.085 | 0.051 | 0.130 | 0.136 | 0.095 | 0.169 | 0.147 | 0.184 | ||
MRR@10 | 0.393 | 0.215 | 0.318 | 0.398 | 0.491 | 0.604 | 0.516 | 0.633 | ||
Movielens | 80% | F1@10 | 0.105 | 0.112 | 0.111 | 0.119 | 0.143 | 0.209 | 0.205 | 0.282 |
NDGG@10 | 0.109 | 0.105 | 0.103 | 0.108 | 0.102 | 0.179 | 0.206 | 0.257 | ||
MAP@10 | 0.059 | 0.056 | 0.042 | 0.046 | 0.062 | 0.106 | 0.109 | 0.136 | ||
MRR@10 | 0.169 | 0.181 | 0.208 | 0.293 | 0.238 | 0.293 | 0.272 | 0.469 | ||
60% | F1@10 | 0.107 | 0.109 | 0.114 | 0.116 | 0.071 | 0.123 | 0.229 | 0.273 | |
NDGG@10 | 0.076 | 0.102 | 0.109 | 0.105 | 0.061 | 0.215 | 0.180 | 0.250 | ||
MAP@10 | 0.033 | 0.054 | 0.047 | 0.045 | 0.030 | 0.068 | 0.125 | 0.132 | ||
MRR@10 | 0.167 | 0.172 | 0.227 | 0.279 | 0.226 | 0.230 | 0.259 | 0.446 | ||
40% | F1@10 | 0.136 | 0.104 | 0.106 | 0.111 | 0.068 | 0.194 | 0.220 | 0.262 | |
NDGG@10 | 0.109 | 0.098 | 0.094 | 0.103 | 0.059 | 0.138 | 0.192 | 0.239 | ||
MAP@10 | 0.037 | 0.056 | 0.042 | 0.045 | 0.030 | 0.063 | 0.109 | 0.149 | ||
MRR@10 | 0.159 | 0.207 | 0.216 | 0.227 | 0.224 | 0.291 | 0.237 | 0.442 | ||
20% | F1@10 | 0.126 | 0.100 | 0.103 | 0.106 | 0.065 | 0.186 | 0.221 | 0.251 | |
NDGG@10 | 0.098 | 0.093 | 0.082 | 0.096 | 0.056 | 0.181 | 0.193 | 0.229 | ||
MAP@10 | 0.046 | 0.047 | 0.050 | 0.038 | 0.025 | 0.091 | 0.091 | 0.113 | ||
MRR@10 | 0.152 | 0.198 | 0.202 | 0.217 | 0.214 | 0.279 | 0.227 | 0.422 |
Method | Yelp | Douban Movie | Movielens | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
F1 | NDGG | MAP | MRR | F1 | NDGG | MAP | MRR | F1 | NDGG | MAP | MRR | |
| 0.339 | 0.255 | 0.306 | 0.470 | 0.310 | 0.381 | 0.206 | 0.653 | 0.239 | 0.220 | 0.118 | 0.346 |
| 0.354 | 0.267 | 0.320 | 0.491 | 0.329 | 0.368 | 0.216 | 0.683 | 0.250 | 0.230 | 0.123 | 0.392 |
| 0.382 | 0.287 | 0.370 | 0.546 | 0.326 | 0.412 | 0.203 | 0.659 | 0.272 | 0.258 | 0.140 | 0.427 |
| 0.396 | 0.285 | 0.376 | 0.580 | 0.345 | 0.380 | 0.251 | 0.677 | 0.096 | 0.270 | 0.133 | 0.493 |
Table 4 Comparison of experimental results considering different relations
Method | Yelp | Douban Movie | Movielens | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
F1 | NDGG | MAP | MRR | F1 | NDGG | MAP | MRR | F1 | NDGG | MAP | MRR | |
| 0.339 | 0.255 | 0.306 | 0.470 | 0.310 | 0.381 | 0.206 | 0.653 | 0.239 | 0.220 | 0.118 | 0.346 |
| 0.354 | 0.267 | 0.320 | 0.491 | 0.329 | 0.368 | 0.216 | 0.683 | 0.250 | 0.230 | 0.123 | 0.392 |
| 0.382 | 0.287 | 0.370 | 0.546 | 0.326 | 0.412 | 0.203 | 0.659 | 0.272 | 0.258 | 0.140 | 0.427 |
| 0.396 | 0.285 | 0.376 | 0.580 | 0.345 | 0.380 | 0.251 | 0.677 | 0.096 | 0.270 | 0.133 | 0.493 |
Method | Yelp | Douban Movie | Movielens | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F1 | NDGG | MAP | MRR | F1 | NDGG | MAP | MRR | F1 | NDGG | MAP | MRR | ||
NULL | 0.322 | 0.243 | 0.291 | 0.447 | 0.295 | 0.267 | 0.196 | 0.621 | 0.227 | 0.209 | 0.141 | 0.329 | |
BC | 0.339 | 0.255 | 0.306 | 0.470 | 0.310 | 0.281 | 0.206 | 0.653 | 0.239 | 0.220 | 0.148 | 0.346 | |
EC | 0.275 | 0.261 | 0.336 | 0.496 | 0.297 | 0.375 | 0.185 | 0.599 | 0.247 | 0.298 | 0.128 | 0.400 | |
PR | 0.416 | 0.285 | 0.376 | 0.480 | 0.330 | 0.450 | 0.251 | 0.688 | 0.296 | 0.270 | 0.143 | 0.493 |
Table 5 Experimental results under different centrality measurement methods
Method | Yelp | Douban Movie | Movielens | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F1 | NDGG | MAP | MRR | F1 | NDGG | MAP | MRR | F1 | NDGG | MAP | MRR | ||
NULL | 0.322 | 0.243 | 0.291 | 0.447 | 0.295 | 0.267 | 0.196 | 0.621 | 0.227 | 0.209 | 0.141 | 0.329 | |
BC | 0.339 | 0.255 | 0.306 | 0.470 | 0.310 | 0.281 | 0.206 | 0.653 | 0.239 | 0.220 | 0.148 | 0.346 | |
EC | 0.275 | 0.261 | 0.336 | 0.496 | 0.297 | 0.375 | 0.185 | 0.599 | 0.247 | 0.298 | 0.128 | 0.400 | |
PR | 0.416 | 0.285 | 0.376 | 0.480 | 0.330 | 0.450 | 0.251 | 0.688 | 0.296 | 0.270 | 0.143 | 0.493 |
[1] |
BURKE R. Hybrid recommender systems: survey and experi-ments[J]. User Modeling and User-Adapted Interaction, 2002, 12(4): 331-370.
DOI URL |
[2] |
ZHOU P Y, LIU J, LIU X, et al. Is deep learning better than traditional approaches in tag recommendation for software information sites?[J]. Information and Software Technology, 2019, 109: 1-13.
DOI URL |
[3] |
CAI X Y, HAN J W, PAN S R, et al. Heterogeneous infor-mation network embedding based personalized query-focused astronomy reference paper recommendation[J]. International Journal of Computational Intelligence Systems, 2018, 11(1): 591-599.
DOI URL |
[4] |
WEI S X, ZHENG X L, CHEN D R, et al. A hybrid approach for movie recommendation via tags and ratings[J]. Electronic Commerce Research and Applications, 2016, 18: 83-94.
DOI URL |
[5] |
LECUN Y, BENGIO Y, HINTON G, et al. Deep learning[J]. Nature, 2015, 521(7553): 436-444.
DOI URL |
[6] |
ZHANG R, XIE P, WANG C, et al. Classifying transporta-tion mode and speed from trajectory data via deep multi-scale learning[J]. Computer Networks, 2019, 162: 106861.
DOI URL |
[7] |
JIAO P F, TANG M H, LIU H T, et al. Variational auto enco-der based bipartite network embedding by integrating local and global structure[J]. Information Sciences, 2020, 519: 9-21.
DOI URL |
[8] | GROVER A, LESKOVEC J. node2vec: scalable feature lear-ning for networks[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, Aug 13-17, 2016. New York: ACM, 2016: 855-864. |
[9] | TANG J, QU M, WANG M Z, et al. LINE: large-scale infor-mation network embedding[C]// Proceedings of the 24th Inter-national Conference on World Wide Web, Florence, May 18-22, 2015. New York: ACM, 2015: 1067-1077. |
[10] | WANG D X, CUI P, ZHU W W. Structural deep network embedding[C]// Proceedings of the 22nd ACM SIGKDD Inter-national Conference on Knowledge Discovery and Data Mining, San Francisco, Aug 13-17, 2016. New York: ACM, 2016: 1225-1234. |
[11] | GAO M, CHEN L H, HE X N, et al. BiNE: bipartite network embedding[C]// Proceedings of the 41st International ACM SIGIR Conference on Research & Development in Informa-tion Retrieval, Ann Arbor, Jul 8-12, 2018. New York: ACM, 2018: 715-724. |
[12] | WU H, PENG Y N, HE P, et al. Service recommendation based on the use of reliable user network supplementary tags[J]. Internet of Things Technology, 2019, 9(2): 48-51. |
[13] | WANG Z K. Research on recommendation algorithm based on representation learning in heterogeneous information net-works[D]. Beijing: Peking University, 2019. |
[14] |
LUO L, XIE H R, RAO Y H, et al. Personalized recommen-dation by matrix co-factorization with tags and time informa-tion[J]. Expert Systems with Application, 2019, 119: 311-321.
DOI URL |
[15] | SHI W S, LIU X M, YU Q. Correlation-aware multi-label active learning for Web service tag recommendation[C]// Proceedings of the 2017 IEEE International Conference on Web Services, Honolulu, Jun 25-30, 2017. Piscataway: IEEE, 2017: 229-236. |
[16] | ZHANG S, XIA Y, LI X. Diversified recommendation algo-rithm for hybrid label based on matrix factorization[C]// Proceedings of the 2018 IEEE 3rd International Conference on Cloud Computing and Big Data Analysis, Chengdu, Apr 20-22, 2018. Piscataway: IEEE, 2018: 39-44. |
[17] | QIANG H, YAN G. A method of personalized recommen-dation based on multi-label propagation for overlapping com-munity detection[C]// Proceedings of the 2012 3rd Interna-tional Conference on System Science, Engineering Design and Manufacturing Informatization, Chengdu, Oct 20-21, 2012. Piscataway: IEEE, 2012: 360-364. |
[18] | BA Q L, LI X Y, BAI Z Y. A similarity calculating approach simulated from TF-IDF in collaborative filtering recommen-dation[C]// Proceedings of the 5th International Conference on Multimedia Information Networking & Security, Nov 1-3, 2013. New York: ACM, 2013: 738-741. |
[19] | OTSUKA E, WALLACE S A, CHIU D. Design and evalua-tion of a Twitter hashtag recommendation system[C]// Procee-dings of the 18th International Database Engineering & Appli-cations Symposium, Porto, Jul 7-9, 2014. New York: ACM, 2014: 330-333. |
[20] | WANG X, LU W, ESTER M. Social recommendation with strong and weak ties[C]// Proceedings of the 25th ACM Inter-national Conference on Information and Knowledge Mana-gement, Indianapolis, Oct 24-28, 2016. New York: ACM, 2016: 5-14. |
[21] | ZHOU P, ZHOU Y X, Wu D P, et al. Differentially private online learning for cloud-based video recommendation with multimedia big data in social networks[J]. IEEE Transac-tions on Multimedia, 2016, 18(6): 1217-1229. |
[22] | HU Y, YI X, DAVIS L S. Collaborative fashion recommen-dation: a functional tensor factorization approach[C]// Procee-dings of the 23rd Annual ACM Conference on Multimedia Conference, Brisbane, Oct 26-30, 2015. New York: ACM, 2015: 129-138. |
[23] | YANG B, LEI Y, LIU J, et al. Social collaborative filtering by trust[J]. IEEE Transactions on Pattern Analysis and Mac-hine Intelligence, 2017, 39(8): 1633-1647. |
[24] | JIANG Z G, ZHOU A, WANG S G, et al. Personalized service recommendation for collaborative tagging systems with social relations and temporal influences[C]// Procee-dings of the 2016 IEEE International Conference on Services Computing, San Francisco, Jun 27-Jul 2, 2016. Washington: IEEE Computer Society, 2016: 786-789. |
[25] |
LIU Y, TIAN Z, SUN J, et al. Distributed representation learning via node2vec for implicit feedback recommenda-tion[J]. Neural Computing and Applications, 2019, 7: 1-11.
DOI URL |
[26] |
ZHUANG F, ZHANG Z, QIAN M, et al. Representation learning via dual-autoencoder for recommendation[J]. Neural Networks, 2017, 90: 83-89.
DOI URL |
[27] | 吴玺煜, 陈启买, 刘海, 等. 基于知识图谱表示学习的协同过滤推荐算法[J]. 计算机工程, 2018, 44(2): 226-232. |
WU X Y, CHEN Q M, LIU H, et al. Collaborative filtering recommendation algorithm based on representation learning of knowledge graph[J]. Computer Engineering, 2018, 44(2): 226-232. | |
[28] | WU L, QUAN C, LI C, et al. A context-aware user-item representation learning for item recommendation[J]. Transac-tions on Information Systems, 2019, 37(2): 1-29. |
[29] |
KONG X, MAO M, WANG W, et al. VOPRec: vector repre-sentation learning of papers with text information and struc-tural identity for recommendation[J]. IEEE Transactions on Emerging Topics in Computing, 2021, 9(1): 226-237.
DOI URL |
[30] | SALAH A, LAUW H W. Probabilistic collaborative repre-sentation learning for personalized item recommendation[C]// Proceedings of the 34th Conference on Uncertainty in A.pngicial Intelligence, Monterey, Aug 6-10, 2018: 998-1008. |
[31] | HAN X T, SHI C, ZHENG L, et al. Representation learning with depth and breadth for recommendation using multi-view data[C]// LNCS 10987: Proceedings of the 2nd Interna-tional Joint Conference on Web and Big Data, Macau, China, Jul 23-25, 2018. Cham: Springer, 2018: 181-188. |
[32] | SHI C, HU B, ZHAO X, et al. Heterogeneous information network embedding for recommendation[J]. IEEE Transac-tions on Knowledge & Data Engineering, 2017, 31(2): 357-370. |
[33] | MIKOLOV T, CHEN K, CORRADO G, et al. Efficient estimation of word representations in vector space[J]. arXiv:1301. 3781, 2013. |
[34] | PAGE L, BRIN S, MOTWANI R, et al. The PageRank cita-tion ranking: bringing order to the web[R]. Stanford: Stan-ford InfoLab., 1999: 161-172. |
[35] | MA H, YANG H X, LYU M R, et al. SoRec: social recom-mendation using probabilistic matrix factorization[C]// Procee-dings of the 17th ACM Conference on Information and Know-ledge Management, Napa Valley, Oct 26-30, 2008. New York: ACM, 2008: 931-940. |
[36] | SHI C, ZHANG Z Q, LUO P, et al. Semantic path based personalized recommendation on weighted heterogeneous information networks[C]// Proceedings of the 24th ACM Inter-national Conference on Information and Knowledge Mana-gement, Melbourne, Oct 19-23, 2015. New York: ACM, 2015: 453-462. |
[37] | RENDLE S, FREUDENTHALER C, GANTNER Z, et al. BPR: Bayesian personalized ranking from implicit feedback[C]// Proceedings of the 25th Conference on Uncertainty in A.pngicial Intelligence, Montreal, Jun 18-21, 2009: 452-461. |
[38] |
LIU H Z, WU Z H, ZHANG X. CPLR: collaborative pair-wise learning to rank for personalized recommendation[J]. Knowledge-Based Systems, 2018, 148: 31-40.
DOI URL |
[39] | SHAO L S, ZHANG J, WEI Y, et al. Personalized QoS predi-ction for Web services via collaborative filtering[C]// Procee-dings of the 2007 IEEE International Conference on Web Services, Salt Lake City, Jul 9-13, 2007. Washington: IEEE Computer Society, 2007: 439-446. |
[40] | RENDLE S. Factorization machines with libFM[J]. ACM Transactions on Intelligent Systems and Technology, 2012, 3(3): 57. |
[1] | WU Sen, DONG Yaxian, WEI Guiying, GAO Xiaonan. Research on User Similarity Calculation of Collaborative Filtering for Sparse Data [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(5): 1043-1052. |
[2] | ZHANG Quangui, HU Jiayan, WANG Li. One Class Collaborative Filtering Recommendation Algorithm Coupled with User Common Characteristics [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(3): 637-648. |
[3] | WU Zhengyang, TANG Yong, LIU Hai. Survey of Personalized Learning Recommendation [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(1): 21-40. |
[4] | CHEN Jie, CHEN Jialin, ZHAO Shu, ZHANG Yanping. Hierarchical Labels Guided Attributed Network Embedding [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(7): 1279-1288. |
[5] | ZHAO Chuan, ZHANG Kaihan, LIANG Jiye. Asymmetric Recommendation Algorithm in Heterogeneous Information Network [J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(6): 939-946. |
[6] | XING Changzheng, ZHAO Hongbao, ZHANG Quangui, GUO Yalan. Review Text Hierarchical Attention and Outer Product for Recommendation Method [J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(6): 947-957. |
[7] | JIANG Yun, HE Wei, CUI Lizhen, YANG Qian, LIU Lei. Mobile Context and User Trajectory Awareness Crowdsourcing Service Recommendation [J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(9): 1471-1480. |
[8] | ZHOU Hui, ZHAO Zhongying, LI Chao. Survey on Representation Learning Methods Oriented to Heterogeneous Information Network [J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(7): 1081-1093. |
[9] | PU Jianyu, CHEN Lei, SHAO Kai. Exploiting Katz Method to Boost Inductive Matrix Completion for Predicting Gene-Disease Associations [J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(7): 1154-1164. |
[10] | WANG Yuchen, WANG Baoliang, HOU Yonghong. Bandits Recommendation Algorithm Based on Collaborative Filtering and Context Information [J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(3): 361-373. |
[11] | SHAO Lixu, DUAN Yucong, ZHOU Zhangbing, GAO Honghao, CHEN Shizhan. Design of Recommendation Services Based on Data, Information and Knowledge Graph Architecture [J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(2): 214-225. |
[12] | ZHU Hongwei, YOU Xiaoming, LIU Sheng. Heterogeneous Dual Population Ant Colony Algorithm Based on Cooperative Filtering Strategy [J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(10): 1754-1767. |
[13] | ZHANG Yiwen, AI Xiaofei, CUI Guangming, QIAN Fulan. Recommendation Algorithm with User's Interest Matrix and Global Preference [J]. Journal of Frontiers of Computer Science and Technology, 2018, 12(2): 197-207. |
[14] | GUO Ningning, WANG Baoliang, HOU Yonghong, CHANG Peng. Collaborative Filtering Recommendation Algorithm Based on Characteristics of Social Network [J]. Journal of Frontiers of Computer Science and Technology, 2018, 12(2): 208-217. |
[15] | FENG Yong, XU Hongyan, WANG Rongbing, GUO Hao. Research on weighted Slope One algorithm incorporating item relevance [J]. Journal of Frontiers of Computer Science and Technology, 2018, 12(10): 1691-1700. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/