Journal of Frontiers of Computer Science and Technology ›› 2022, Vol. 16 ›› Issue (8): 1829-1841.DOI: 10.3778/j.issn.1673-9418.2201012
• Artificial Intelligence • Previous Articles Next Articles
ZHAO Xuewu1, WANG Hongmei1, LIU Chaohui1, LI Lingling+(), BO Shukui1, JI Junzhong2
Received:
2022-01-05
Revised:
2022-04-08
Online:
2022-08-01
Published:
2022-08-19
About author:
ZHAO Xuewu, born in 1983, Ph.D., lecturer, M.S. supervisor, member of CCF. His research interests include data mining, machine learning and brain science.Supported by:
赵学武1, 王红梅1, 刘超慧1, 李玲玲+(), 薄树奎1, 冀俊忠2
通讯作者:
+E-mail: 373413349@qq.com.作者简介:
赵学武(1983—),男,河南南阳人,博士,讲师,硕士生导师,CCF会员,主要研究方向为数据挖掘、机器学习、脑科学。基金资助:
CLC Number:
ZHAO Xuewu, WANG Hongmei, LIU Chaohui, LI Lingling, BO Shukui, JI Junzhong. Artificial Jellyfish Search Optimization Algorithm for Human Brain Functional Parcellation[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(8): 1829-1841.
赵学武, 王红梅, 刘超慧, 李玲玲, 薄树奎, 冀俊忠. 面向人脑功能划分的人工水母搜索优化算法[J]. 计算机科学与探索, 2022, 16(8): 1829-1841.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2201012
Image | Sequence | TR/ms | No_s | FOV | No_v |
---|---|---|---|---|---|
F.Img | EPI | 2 000 | 33 | 200×200 | 200 |
S.Img | MPRAGE | 2 530 | 144 | 256×256 | 1 |
Table 1 Scanning parameters of fMRI data
Image | Sequence | TR/ms | No_s | FOV | No_v |
---|---|---|---|---|---|
F.Img | EPI | 2 000 | 33 | 200×200 | 200 |
S.Img | MPRAGE | 2 530 | 144 | 256×256 | 1 |
K | SC | AJSO | IAJSO | SAJSO | ISAJSO |
---|---|---|---|---|---|
2 | 72 234.77±4.37E-11 | 72 233.47±0 | 72 232.89±0 | 72 232.57±0 | 72 231.50±0 |
3 | 61 362.75±5.64E-01 | 61 358.00±8.06E-02 | 61 345.10±7.96E-02 | 61 101.62±1.41E-02 | 60 913.33±1.23E-02 |
4 | 50 915.47±1.94E-01 | 50 836.03±6.27E-02 | 50 761.07±1.03E-02 | 50 681.75±1.25E-02 | 50 648.13±9.58E-02 |
5 | 44 318.16±6.90E-01 | 43 933.13±4.09E-02 | 43 875.30±2.26E-02 | 44 820.60±2.17E-02 | 43 882.83±5.59E-02 |
6 | 40 282.39±6.81E-01 | 40 142.90±2.09E-03 | 40 089.67±2.99E-03 | 40 107.03±7.69E-03 | 40 083.43±1.02E-03 |
7 | 38 630.60±1.43E-02 | 38 381.83±1.14E-03 | 37 877.73±1.19E-03 | 37 143.86±1.14E-03 | 37 114.07±1.38E-04 |
8 | 35 277.22±1.35E-02 | 34 625.00±2.51E-04 | 34 513.73±1.97E-04 | 34 529.80±2.96E-04 | 34 497.03±1.76E-04 |
9 | 33 769.14±7.19E-02 | 32 984.13±2.47E-04 | 32 916.53±2.15E-04 | 32 967.47±2.85E-04 | 32 905.37±2.66E-05 |
Table 2 SSE means and standard deviation of 5 algorithms on different number of parcels
K | SC | AJSO | IAJSO | SAJSO | ISAJSO |
---|---|---|---|---|---|
2 | 72 234.77±4.37E-11 | 72 233.47±0 | 72 232.89±0 | 72 232.57±0 | 72 231.50±0 |
3 | 61 362.75±5.64E-01 | 61 358.00±8.06E-02 | 61 345.10±7.96E-02 | 61 101.62±1.41E-02 | 60 913.33±1.23E-02 |
4 | 50 915.47±1.94E-01 | 50 836.03±6.27E-02 | 50 761.07±1.03E-02 | 50 681.75±1.25E-02 | 50 648.13±9.58E-02 |
5 | 44 318.16±6.90E-01 | 43 933.13±4.09E-02 | 43 875.30±2.26E-02 | 44 820.60±2.17E-02 | 43 882.83±5.59E-02 |
6 | 40 282.39±6.81E-01 | 40 142.90±2.09E-03 | 40 089.67±2.99E-03 | 40 107.03±7.69E-03 | 40 083.43±1.02E-03 |
7 | 38 630.60±1.43E-02 | 38 381.83±1.14E-03 | 37 877.73±1.19E-03 | 37 143.86±1.14E-03 | 37 114.07±1.38E-04 |
8 | 35 277.22±1.35E-02 | 34 625.00±2.51E-04 | 34 513.73±1.97E-04 | 34 529.80±2.96E-04 | 34 497.03±1.76E-04 |
9 | 33 769.14±7.19E-02 | 32 984.13±2.47E-04 | 32 916.53±2.15E-04 | 32 967.47±2.85E-04 | 32 905.37±2.66E-05 |
K | K-means | HC | GMM | SC | SSC |
---|---|---|---|---|---|
2 | -0.226 5±1.49E-01 | 0.029 4±3.47E-18 | 0.071 3±3.36E-01 | 0.404 4±5.55E-03 | -1.051 5±4.44E-16 |
3 | -1.078 2±4.07E-01 | -0.544 1±3.33E-16 | -0.800 0±4.98E-01 | -0.382 3±2.78E-02 | -1.463 2±0 |
4 | -1.730 4±3.75E-01 | -1.536 8±0 | -1.239 0±4.65E-01 | -1.205 9±2.22E-02 | -2.602 9±4.44E-16 |
5 | -2.245 3±3.58E-01 | -1.955 9±8.88E-16 | -1.787 1±4.67E-01 | -2.029 4±1.34E-02 | -3.617 6±2.66E-15 |
6 | -2.693 9±4.19E-01 | -2.544 1±1.33E-15 | -2.307 0±4.06E-01 | -2.438 7±1.32E-02 | -4.644 6±4.55E-02 |
7 | -3.129 9±4.22E-01 | -2.852 9±4.44E-16 | -2.580 1±4.53E-01 | -2.323 5±1.33E-02 | -4.703 9±1.97E-02 |
8 | -3.522 5±3.87E-01 | -3.308 8±2.22E-15 | -2.974 6±4.75E-01 | -2.808 8±2.22E-02 | -5.360 8±1.10E-01 |
9 | -3.681 1±3.35E-01 | -3.551 5±8.88E-16 | -3.301 5±3.68E-01 | -3.092 2±1.28E-02 | -5.524 0±1.78E-02 |
K | AJSO | IAJSO | SAJSO | ISAJSO | |
2 | 0.404 4±2.78E-05 | 0.404 4±2.78E-05 | 0.404 4±1.90E-05 | 0.404 4±1.03E-05 | |
3 | -0.367 7±4.01E-04 | -0.345 6±5.65E-04 | -0.338 2±8.97E-04 | -0.316 2±6.33E-04 | |
4 | -1.188 0±6.48E-03 | -1.184 3±7.81E-03 | -1.167 2±8.39E-03 | -1.117 6±1.04E-03 | |
5 | -1.723 4±2.70E-03 | -1.618 6±2.79E-03 | -1.697 8±2.58E-03 | -1.455 9±2.49E-03 | |
6 | -2.102 5±3.05E-03 | -1.879 4±3.29E-03 | -2.097 3±3.35E-03 | -1.994 1±2.93E-03 | |
7 | -2.198 5±2.13E-03 | -2.139 7±2.93E-03 | -2.007 0±2.65E-03 | -1.977 9±2.82E-03 | |
8 | -2.658 1±2.69E-03 | -2.602 7±3.68E-03 | -2.551 5±3.06E-03 | -2.492 6±3.54E-03 | |
9 | -3.051 5±4.21E-03 | -3.007 4±3.76E-03 | -2.963 2±3.86E-03 | -2.933 8±2.70E-03 |
Table 3 SM means and standard deviation of 9 algorithms on different number of parcels
K | K-means | HC | GMM | SC | SSC |
---|---|---|---|---|---|
2 | -0.226 5±1.49E-01 | 0.029 4±3.47E-18 | 0.071 3±3.36E-01 | 0.404 4±5.55E-03 | -1.051 5±4.44E-16 |
3 | -1.078 2±4.07E-01 | -0.544 1±3.33E-16 | -0.800 0±4.98E-01 | -0.382 3±2.78E-02 | -1.463 2±0 |
4 | -1.730 4±3.75E-01 | -1.536 8±0 | -1.239 0±4.65E-01 | -1.205 9±2.22E-02 | -2.602 9±4.44E-16 |
5 | -2.245 3±3.58E-01 | -1.955 9±8.88E-16 | -1.787 1±4.67E-01 | -2.029 4±1.34E-02 | -3.617 6±2.66E-15 |
6 | -2.693 9±4.19E-01 | -2.544 1±1.33E-15 | -2.307 0±4.06E-01 | -2.438 7±1.32E-02 | -4.644 6±4.55E-02 |
7 | -3.129 9±4.22E-01 | -2.852 9±4.44E-16 | -2.580 1±4.53E-01 | -2.323 5±1.33E-02 | -4.703 9±1.97E-02 |
8 | -3.522 5±3.87E-01 | -3.308 8±2.22E-15 | -2.974 6±4.75E-01 | -2.808 8±2.22E-02 | -5.360 8±1.10E-01 |
9 | -3.681 1±3.35E-01 | -3.551 5±8.88E-16 | -3.301 5±3.68E-01 | -3.092 2±1.28E-02 | -5.524 0±1.78E-02 |
K | AJSO | IAJSO | SAJSO | ISAJSO | |
2 | 0.404 4±2.78E-05 | 0.404 4±2.78E-05 | 0.404 4±1.90E-05 | 0.404 4±1.03E-05 | |
3 | -0.367 7±4.01E-04 | -0.345 6±5.65E-04 | -0.338 2±8.97E-04 | -0.316 2±6.33E-04 | |
4 | -1.188 0±6.48E-03 | -1.184 3±7.81E-03 | -1.167 2±8.39E-03 | -1.117 6±1.04E-03 | |
5 | -1.723 4±2.70E-03 | -1.618 6±2.79E-03 | -1.697 8±2.58E-03 | -1.455 9±2.49E-03 | |
6 | -2.102 5±3.05E-03 | -1.879 4±3.29E-03 | -2.097 3±3.35E-03 | -1.994 1±2.93E-03 | |
7 | -2.198 5±2.13E-03 | -2.139 7±2.93E-03 | -2.007 0±2.65E-03 | -1.977 9±2.82E-03 | |
8 | -2.658 1±2.69E-03 | -2.602 7±3.68E-03 | -2.551 5±3.06E-03 | -2.492 6±3.54E-03 | |
9 | -3.051 5±4.21E-03 | -3.007 4±3.76E-03 | -2.963 2±3.86E-03 | -2.933 8±2.70E-03 |
K | K-means | HC | GMM | SC | SSC |
---|---|---|---|---|---|
2 | 0.798 9±3.32E-02 | 0.757 4±1.11E-16 | 0.703 8±1.31E-01 | 0.909 4±0 | 0.601 1±0 |
3 | 0.824 5±7.79E-02 | 0.881 1±5.55E-16 | 0.810 0±7.10E-02 | 0.901 2±4.44E-04 | 0.737 5±4.20E-16 |
4 | 0.846 6±4.09E-02 | 0.881 9±3.33E-16 | 0.830 6±4.92E-02 | 0.910 6±5.73E-03 | 0.771 2±3.14E-16 |
5 | 0.865 9±2.77E-02 | 0.888 7±1.11E-16 | 0.854 5±3.22E-02 | 0.892 7±4.34E-03 | 0.678 6±2.22E-16 |
6 | 0.872 8±2.59E-02 | 0.883 6±3.33E-16 | 0.867 4±3.12E-02 | 0.895 3±7.88E-03 | 0.657 2±4.50E-03 |
7 | 0.873 3±2.58E-02 | 0.895 0±6.66E-16 | 0.873 1±3.04E-02 | 0.911 1±1.01E-03 | 0.736 5±2.20E-03 |
8 | 0.877 1±2.25E-02 | 0.893 7±5.55E-16 | 0.888 1±1.38E-02 | 0.907 1±3.32E-03 | 0.729 1±1.22E-02 |
9 | 0.889 5±1.53E-02 | 0.897 4±5.55E-16 | 0.891 2±1.51E-02 | 0.909 4±4.62E-03 | 0.739 4±1.76E-03 |
K | AJSO | IAJSO | SAJSO | ISAJSO | |
2 | 0.909 4±5.55E-16 | 0.909 4±5.55E-16 | 0.910 0±1.28E-03 | 0.911 2±5.15E-04 | |
3 | 0.901 4±8.47E-04 | 0.902 1±1.03E-04 | 0.902 5±1.74E-04 | 0.902 6±1.09E-04 | |
4 | 0.911 7±5.30E-04 | 0.912 5±6.40E-04 | 0.912 6±5.06E-04 | 0.914 6±6.62E-04 | |
5 | 0.896 4±1.03E-02 | 0.898 9±1.34E-04 | 0.897 5±1.76E-04 | 0.905 8±1.04E-04 | |
6 | 0.902 1±1.37E-03 | 0.906 4±4.54E-03 | 0.906 2±1.59E-03 | 0.909 5±1.25E-03 | |
7 | 0.912 5±1.20E-03 | 0.913 6±1.56E-03 | 0.898 6±8.95E-03 | 0.912 4±1.39E-03 | |
8 | 0.912 3±1.50E-03 | 0.913 7±1.37E-03 | 0.891 4±1.33E-03 | 0.921 5±1.41E-03 | |
9 | 0.913 2±1.74E-03 | 0.913 9±4.27E-03 | 0.913 7±5.47E-03 | 0.916 1±1.45E-03 |
Table 4 SI means and standard deviation of 9 algorithms on different number of parcels
K | K-means | HC | GMM | SC | SSC |
---|---|---|---|---|---|
2 | 0.798 9±3.32E-02 | 0.757 4±1.11E-16 | 0.703 8±1.31E-01 | 0.909 4±0 | 0.601 1±0 |
3 | 0.824 5±7.79E-02 | 0.881 1±5.55E-16 | 0.810 0±7.10E-02 | 0.901 2±4.44E-04 | 0.737 5±4.20E-16 |
4 | 0.846 6±4.09E-02 | 0.881 9±3.33E-16 | 0.830 6±4.92E-02 | 0.910 6±5.73E-03 | 0.771 2±3.14E-16 |
5 | 0.865 9±2.77E-02 | 0.888 7±1.11E-16 | 0.854 5±3.22E-02 | 0.892 7±4.34E-03 | 0.678 6±2.22E-16 |
6 | 0.872 8±2.59E-02 | 0.883 6±3.33E-16 | 0.867 4±3.12E-02 | 0.895 3±7.88E-03 | 0.657 2±4.50E-03 |
7 | 0.873 3±2.58E-02 | 0.895 0±6.66E-16 | 0.873 1±3.04E-02 | 0.911 1±1.01E-03 | 0.736 5±2.20E-03 |
8 | 0.877 1±2.25E-02 | 0.893 7±5.55E-16 | 0.888 1±1.38E-02 | 0.907 1±3.32E-03 | 0.729 1±1.22E-02 |
9 | 0.889 5±1.53E-02 | 0.897 4±5.55E-16 | 0.891 2±1.51E-02 | 0.909 4±4.62E-03 | 0.739 4±1.76E-03 |
K | AJSO | IAJSO | SAJSO | ISAJSO | |
2 | 0.909 4±5.55E-16 | 0.909 4±5.55E-16 | 0.910 0±1.28E-03 | 0.911 2±5.15E-04 | |
3 | 0.901 4±8.47E-04 | 0.902 1±1.03E-04 | 0.902 5±1.74E-04 | 0.902 6±1.09E-04 | |
4 | 0.911 7±5.30E-04 | 0.912 5±6.40E-04 | 0.912 6±5.06E-04 | 0.914 6±6.62E-04 | |
5 | 0.896 4±1.03E-02 | 0.898 9±1.34E-04 | 0.897 5±1.76E-04 | 0.905 8±1.04E-04 | |
6 | 0.902 1±1.37E-03 | 0.906 4±4.54E-03 | 0.906 2±1.59E-03 | 0.909 5±1.25E-03 | |
7 | 0.912 5±1.20E-03 | 0.913 6±1.56E-03 | 0.898 6±8.95E-03 | 0.912 4±1.39E-03 | |
8 | 0.912 3±1.50E-03 | 0.913 7±1.37E-03 | 0.891 4±1.33E-03 | 0.921 5±1.41E-03 | |
9 | 0.913 2±1.74E-03 | 0.913 9±4.27E-03 | 0.913 7±5.47E-03 | 0.916 1±1.45E-03 |
[1] | EICKHOFF S B, YEO B T T, GENON S. Imaging-based parcellations of the human brain[J]. Nature Reviews Neuroscience, 2018, 19(11): 672-686. |
[2] | 赵学武, 冀俊忠, 梁佩鹏. 面向fMRI数据的人脑功能划分[J]. 科学通报, 2016, 61(18): 2035-2052. |
ZHAO X W, JI J Z, LIANG P P. The human brain functional parcellation based on fMRI data[J]. Chinese Science Bulletin, 2016, 61(18): 2035-2052. | |
[3] | KIM J H, LEE J M, JO H J, et al. Defining functional SMA and pre-SMA subregions in human MFC using resting state fMRI: functional connectivity-based parcellation method[J]. NeuroImage, 2010, 49(3): 2375-2386. |
[4] | CAUDA F, D’AGATA F, SACCO K, et al. Functional connectivity of the insula in the resting brain[J]. NeuroImage, 2011, 55(1): 8-23. |
[5] | JUNG W H, JANG J H, PARK J W, et al. Unravelling the intrinsic functional organization of the human striatum: a parcellation and connectivity study based on resting-state FMRI[J]. PLoS One, 2014, 9(9): e106768. |
[6] | BOUKHDHIR A, ZHANG Y, MIGNOTTE M, et al. Unrave-ling reproducible dynamic states of individual brain functional parcellation[J]. Network Neuroscience, 2021, 5(1): 28-55. |
[7] | LIU X, EICKHOFF S B, CASPERS S, et al. Functional parcellation of human and macaque striatum reveals human-specific connectivity in the dorsal caudate[J]. NeuroImage, 2021, 235: 118006. |
[8] | BLUMENSATH T, JBABDI S, GLASSER M F, et al. Spatially constrained hierarchical parcellation of the brain with resting-state fMRI[J]. NeuroImage, 2013, 76: 313-324. |
[9] | CRADDOCK R C, JAMES G A, HOLTZHEIMER III P E, et al. A whole brain fMRI atlas generated via spatially constrained spectral clustering[J]. Human Brain Mapping, 2012, 33(8): 1914-1928. |
[10] | NEBEL M B, JOEL S E, MUSCHELLI J, et al. Disruption of functional organization within the primary motor cortex in children with autism[J]. Human Brain Mapping, 2014, 35(2): 567-580. |
[11] | MEJIA A F, NEBEL M B, SHOU H, et al. Improving reliability of subject-level resting-state fMRI parcellation with shrinkage estimators[J]. NeuroImage, 2015, 112: 14-29. |
[12] | REN Y, GUO L, GUO C C. A connectivity-based parcellation improved functional representation of the human cerebellum[J]. Scientific Reports, 2019, 9(1): 1-12. |
[13] | HU Y, LI X, WANG L, et al. T-distribution stochastic neighbor embedding for fine brain functional parcellation on rs-fMRI[J]. Brain Research Bulletin, 2020, 162(9): 199-207. |
[14] | CHENG H, LIU J. Concurrent brain parcellation and connectivity estimation via co-clustering of resting state fMRI data: a novel approach[J]. Human Brain Mapping, 2021, 42(8): 2477-2489. |
[15] | RYALI S, CHEN T, SUPEKAR K, et al. A parcellation scheme based on von Mises-Fisher distributions and Markov random fields for segmenting brain regions using resting-state fMRI[J]. NeuroImage, 2013, 65: 83-96. |
[16] | HONNORAT N, EAVANI H, SATTERTHWAITE T D, et al. GraSP: geodesic graph-based segmentation with shape priors for the functional parcellation of the cortex[J]. NeuroImage, 2015, 106: 207-221. |
[17] | JANSSEN R J, JYLÄNKI P, KESSELS R P C, et al. Probabilistic model-based functional parcellation reveals a robust, fine-grained subdivision of the striatum[J]. NeuroImage, 2015, 119: 398-405. |
[18] | 赵学武, 冀俊忠, 姚垚. 基于免疫克隆选择算法搜索GMM的脑岛功能划分[J]. 浙江大学学报(工学版), 2017, 51(12): 2320-2331. |
ZHAO X W, JI J Z, YAO Y. Insula functional parcellation by searching Gaussian mixture model (GMM) using immune clonal selection (ICS) algorithm[J]. Journal of Zhejiang University (Engineering Science), 2017, 51(12): 2320-2331. | |
[19] | BLUMENSATH T, BEHRENS T E J, SMITH S M. Resting-state FMRI single subject cortical parcellation based on region growing[C]// Proceedings of the 15th International Conference on Medical Image Computing and Computer-Assisted Intervention, Nice, Oct 1-5, 2012. Berlin: Springer, 2012: 188-195. |
[20] | BELLEC P, PERLBARG V, JBABDI S, et al. Identification of large-scale networks in the brain using fMRI[J]. NeuroImage, 2006, 29(4): 1231-1243. |
[21] | BLUMENSATH T, JBABDI S, GLASSER M F, et al. Spatially constrained hierarchical parcellation of the brain with resting-state fMRI[J]. NeuroImage, 2013, 76: 313-324. |
[22] | HALE J R, MAYHEW S D, MULLINGER K J, et al. Comparison of functional thalamic segmentation from seed-based analysis and ICA[J]. NeuroImage, 2015, 114: 448-465. |
[23] | NOMI J S, FARRANT K, DAMARAJU E, et al. Dynamic functional network connectivity reveals unique and overlapping profiles of insula subdivisions[J]. Human Brain Mapping, 2016, 37(5): 1770-1787. |
[24] | DUFF E P, TRACHTENBERG A J, MACKAY C E, et al. Task-driven ICA feature generation for accurate and interpretable prediction using fMRI[J]. NeuroImage, 2012, 60(1): 189-203. |
[25] | KAZEMIVASH B, CALHOUN V D. BPARC:a novel spatio-temporal (4D) data-driven brain parcellation scheme based on deep residual networks[C]// Proceedings of the 2020 IEEE 20th International Conference on Bioinformatics and Bioengineering, Cincinnati, Oct 26-28, 2020. Piscataway: IEEE, 2020: 1071-1076. |
[26] | FAN L, ZHONG Q, QIN J, et al. Brain parcellation driven by dynamic functional connectivity better capture intrinsic network dynamics[J]. Human Brain Mapping, 2021, 42(5): 1416-1433. |
[27] | MISHRA A, ROGERS B P, CHEN L M, et al. Functional connectivity-based parcellation of amygdala using self-organized mapping: a data driven approach[J]. Human Brain Mapping, 2014, 35(4): 1247-1260. |
[28] | GRANDE-BARRETO J. Partial volume segmentation in magnetic resonance imaging (MRI)[D]. Puebla: National Institute for Astrophysics Optics and Electronics, 2017. |
[29] | CHOU J S, TRUONG D N. A novel metaheuristic optimizer inspired by behavior of jellyfish in ocean[J]. Applied Mathematics and Computation, 2021, 389(2): 125535. |
[30] | ABDEL-BASSET M, MOHAMED R, ABOUHAWWASH M, et al. An improved jellyfish algorithm for multilevel thresholding of magnetic resonance brain image segmentations[J]. Computers, Materials and Continua, 2021, 68(3): 2961-2977. |
[31] | FARHAT M, KAMEL S, ATALLAH A M, et al. Optimal power flow solution based on jellyfish search optimization considering un certainty of renewable energy sources[J]. IEEE Access, 2021, 9: 100911-100933. |
[32] | 朱佳莹, 高茂庭. 融合粒子群与改进蚁群算法的AUV路径规划算法[J]. 计算机工程与应用, 2021, 57(6): 267-273. |
ZHU J Y, GAO M T. AUV path planning based on particle swarm optimization and improved ant colony optimization[J]. Computer Engineering and Applications, 2021, 57(6): 267-273. | |
[33] | 胡晓敏, 王明丰, 张首荣, 等. 用于文本聚类的新型差分进化粒子群算法[J]. 计算机工程与应用, 2021, 57(4): 61-67. |
HU X M, WANG M F, ZHANG S R, et al. New differential evolution with particle swarm optimization algorithm for text clustering[J]. Computer Engineering and Applications, 2021, 57(4): 61-67. | |
[34] | 张晗, 杨继斌, 张继业, 等. 基于多种群萤火虫算法的车载燃料电池直流微电网能量管理优化[J]. 中国电机工程学报, 2021, 41(3): 13-19. |
ZHANG H, YANG J B, ZHANG J Y, et al. Multiple-population firefly algorithm-based energy management strategy for vehicle-mounted fuel cell DC microgrid[J]. Proceedings of the CSEE, 2021, 41(3): 13-19. | |
[35] | 章呈瑞, 柯鹏, 尹梅. 改进人工蜂群算法及其在边缘计算卸载的应用[J]. 计算机工程与应用, 2022, 58(7): 150-161. |
ZHANG C R, KE P, YIN M. Improved artificial bee colony algorithm and its application in edge computing offloading[J]. Computer Engineering and Applications, 2022, 58(7): 150-161. | |
[36] | ZHANG Y, CASPERS S, FAN L, et al. Robust brain parcellation using sparse representation on resting-state fMRI[J]. Brain Structure and Function, 2015, 220(6): 3565-3579. |
[37] | CHENG H, WU H, FAN Y. Optimizing affinity measures for parcellating brain structures based on resting state fMRI data: a validation on medial superior frontal cortex[J]. Journal of Neuroscience Methods, 2014, 237(11): 90-102. |
[38] | WANG J, JU L, WANG X. An edge-weighted centroidal voronoi tessellation model for image segmentation[J]. IEEE Transactions on Image Processing, 2009, 18(8): 1844-1858. |
[1] | LIU Chen, XIAO Zhiyong, WU Xinxin. Application of Three-Dimensional Convolution Network in Brain Hippocampus Segmentation [J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(3): 493-501. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/