Journal of Frontiers of Computer Science and Technology ›› 2022, Vol. 16 ›› Issue (9): 2041-2049.DOI: 10.3778/j.issn.1673-9418.2102013
• Database Technology • Previous Articles Next Articles
HE Yunbin(), LIU Wanxu, WAN Jing
Received:
2021-02-02
Revised:
2021-06-02
Online:
2022-09-01
Published:
2021-06-28
About author:
HE Yunbin, born in 1972, professor, M.S. super-visor. His research interests include database theory and application.Supported by:
通讯作者:
+ E-mail: hybha@163.com作者简介:
何云斌(1972—),男,教授,硕士生导师,主要研究方向为数据库理论与应用。基金资助:
CLC Number:
HE Yunbin, LIU Wanxu, WAN Jing. Optimized Number of Reverse Neighbor Clustering Algorithm by Voronoi Diagram in Obstacle Space[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(9): 2041-2049.
何云斌, 刘婉旭, 万静. 障碍空间中Voronoi图优化的反向近邻数聚类算法[J]. 计算机科学与探索, 2022, 16(9): 2041-2049.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2102013
数据集 | 样本数目 | 维数 | 类别 |
---|---|---|---|
Iris | 150 | 4 | 3 |
Wine | 178 | 13 | 3 |
Haberman | 306 | 3 | 2 |
Heart | 270 | 13 | 2 |
Table 1 UCI laboratory datasets
数据集 | 样本数目 | 维数 | 类别 |
---|---|---|---|
Iris | 150 | 4 | 3 |
Wine | 178 | 13 | 3 |
Haberman | 306 | 3 | 2 |
Heart | 270 | 13 | 2 |
Dataset | Algorithm | F-measure | Silhouette |
---|---|---|---|
Iris | OBRK-means | 0.891 1 | 0.798 9 |
DBCCOM | 0.877 9 | 0.799 3 | |
Wine | OBRK-means | 0.889 7 | 0.817 5 |
DBCCOM | 0.876 8 | 0.802 3 | |
Haberman | OBRK-means | 0.878 6 | 0.687 9 |
DBCCOM | 0.865 1 | 0.655 5 | |
Heart | OBRK-means | 0.881 0 | 0.779 1 |
DBCCOM | 0.869 7 | 0.762 1 |
Table 2 Comparison of effectiveness of algorithms
Dataset | Algorithm | F-measure | Silhouette |
---|---|---|---|
Iris | OBRK-means | 0.891 1 | 0.798 9 |
DBCCOM | 0.877 9 | 0.799 3 | |
Wine | OBRK-means | 0.889 7 | 0.817 5 |
DBCCOM | 0.876 8 | 0.802 3 | |
Haberman | OBRK-means | 0.878 6 | 0.687 9 |
DBCCOM | 0.865 1 | 0.655 5 | |
Heart | OBRK-means | 0.881 0 | 0.779 1 |
DBCCOM | 0.869 7 | 0.762 1 |
[1] |
谢娟英, 丁丽娟. 完全自适应的谱聚类算法[J]. 电子学报, 2019, 47(5): 1000-1008.
DOI |
XIE J Y, DING L J. The true self-adaptive spectral cluste-ring algorithms[J]. Acta Electronica Sinica, 2019, 47(5): 1000-1008. | |
[2] |
安宁, 江思源, 唐晨, 等. 融合单纯形映射与熵加权的聚类方法[J]. 计算机工程与应用, 2020, 56(9): 148-155.
DOI |
AN N, JIANG S Y, TANG C, et al. Clustering method by combining simplex mapping and entropy weighting[J]. Computer Engineering and Applications, 2020, 56(9): 148-155. | |
[3] | BABY V, CHANDRA N S. Distributed threshold k-means clustering for privacy preserving data mining[C]// Procee-dings of the 2016 International Conference on Advances in Computing, Communications and Informatics, Jaipur, Sep 21-24, 2016. Piscataway: IEEE, 2016: 2286-2289. |
[4] | CARLSSON G E, MÉMOLI F, RIBEIRO A, et al. Admissi-ble hierarchical clustering methods and algorithms for asym-metric networks[J]. IEEE Transactions on Signal and Infor-mation Processing over Networks, 2017, 3(4): 711-727. |
[5] | 邢长征, 张园. 基于密度与网格的聚类算法的改进[J]. 计算机工程与应用, 2016, 52(22): 81-85. |
XING C Z, ZHANG Y. Improved clustering algorithm based on density and grid[J]. Computer Engineering and Applica-tions, 2016, 52(22): 81-85. | |
[6] |
CELEUX G, MAUGIS-RABUSSEAU C, SEDKI M. Varia-ble selection in model-based clustering and discriminant ana-lysis with a regularization approach[J]. Advances in Data Analysis and Classification, 2019, 13(1): 259-278.
DOI URL |
[7] |
RODRIGUEZ A, LAIO A. Clustering by fast search and find of density peaks[J]. Science, 2014, 344(6191): 1492-1496.
DOI URL |
[8] | 卢炎生, 娄强. 障碍空间里基于密度的快速聚类算法[J]. 小型微型计算机系统, 2007, 28(11): 1976-1980. |
LU Y S, LOU Q. Fast density-based clustering algorithm con-taining obstacles[J]. Journal of Chinese Computer Systems, 2007, 28(11): 1976-1980. | |
[9] | 李宇涵, 孙冬璞. 基于Voronoi图的障碍不确定数据的聚类算法[J]. 计算机工程与科学, 2016, 38(5): 1031-1038. |
LI Y H, SUN D P. A clustering algorithm of uncertain data with obstacles based on Voronoi diagram[J]. Computer En-gineering & Science, 2016, 38(5): 1031-1038. | |
[10] | TUNG A K H, HOU J, HAN J W. Spatial clustering in the presence of obstacles[C]// Proceedings of the 17th Interna-tional Conference on Data Engineering, Heidelberg, Apr 2-6, 2001. Washington: IEEE Computer Society, 2001: 359-367. |
[11] | 陈克平, 周丽华, 王丽珍, 等. 一种带障碍的网格弥散聚类算法DCellO[C]// 第二十一届中国数据库学术会议, 厦门, 2004. 北京: 中国计算机学会, 2004: 462-469. |
CHEN K P, ZHOU L H, WANG L Z, et al. A diffusant clus-tering algorithm based on grid in the presence of obstacles-DCellO[C]// The 21st National Database Conference of China, Oct 14-17, 2004. Beijing: China Computer Federation, 2004: 217-224. | |
[12] |
曹科研, 王国仁, 韩东红, 等. 障碍空间中不确定数据聚类算法[J]. 计算机科学与探索, 2012, 6(12): 1087-1097.
DOI |
CAO K Y, WANG G R, HAN D H, et al. Clustering algori-thm of uncertain data in obstacle space[J]. Journal of Fron-tiers of Computer Science and Technology, 2012, 6(12): 1087-1097. | |
[13] | 万静, 崔美玉, 何云斌, 等. 障碍空间中基于Voronoi图的不确定数据聚类算法[J]. 计算机研究与发展, 2019, 56(5): 977-991. |
WAN J, CUI M Y, HE Y B, et al. Uncertain data clustering algorighm based on Voronoi diagram in obstacle space[J]. Journal of Computer Research and Development, 2019, 56(5): 977-991. | |
[14] | DUHAN N, SHARMA A K. DBCCOM: density based clus-tering with constraints and obstacle modeling[C]// Procee-dings of the 4th International Conference on Contemporary Computing, Noida, Aug 8-10, 2011. Berlin, Heidelberg: Sprin-ger, 2011: 212-228. |
[15] | 陈智鹏, 杨诗琴. 带障碍物情况下两点间最短距离的求解方法[J]. 计算机工程, 2010, 36(16): 171-173. |
CHEN Z P, YANG S Q. Solution of shortest distance bet-ween two points in presence of obstacles[J]. Computer En-gineering, 2010, 36(16): 171-173. | |
[16] | 陈朝威, 常冬霞. 基于密度差分的自动聚类算法[J]. 软件学报, 2018, 29(4): 935-944. |
CHEN Z W, CHANG D X. Automatic clustering algorithm based on density difference[J]. Journal of Software, 2018, 29(4): 935-944. | |
[17] | 韩心然. 考虑多边形障碍区域的线状需求物流节点选址研究[D]. 北京: 北京交通大学, 2018. |
HAN X R. Research on logistics node location with curved demands considering polygonal obstacles[D]. Beijing: Bei-jing Jiaotong University, 2018. |
[1] | CHEN Lei, WU Runxiu, LI Peiwu, ZHAO Jia. Weighted K-nearest Neighbors and Multi-cluster Merge Density Peaks Clustering Algorithm [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(9): 2163-2176. |
[2] | XU Jia, MO Xiaokun, YU Ge, LYU Pin, WEI Tingting. SQL-Detector: SQL Plagiarism Detection Technique Based on Coding Features [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(9): 2030-2040. |
[3] | ZHAO Liheng, WANG Jian, CHEN Hongjun. Density-Peak Clustering Algorithm on Decentralized and Weighted Clusters Merging [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(8): 1910-1922. |
[4] | ZHANG Xiangping, LIU Jianxun, XIAO Qiaoxiang, CAO Buqing. Multidimensional Information-Based Web Service Representation Method [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(7): 1561-1569. |
[5] | JIANG Yiying, ZHANG Liping, JIN Feihu, HAO Xiaohong. Groups Nearest Neighbor Query of Mixed Data in Spatial Database [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(2): 348-358. |
[6] | CHEN Junfen, ZHANG Ming, ZHAO Jiacheng, XIE Bojun, LI Yan. Deep Clustering Algorithm Based on Denoising and Self-Attention [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(9): 1717-1727. |
[7] | WANG Dagang, DING Shifei, ZHONG Jin. Research of Density Peaks Clustering Algorithm Based on Second-Order k Neighbors [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(8): 1490-1500. |
[8] | SHEN Xueli, QIN Xinyu. KNN Algorithm of Enhanced Clustering Based on Density Canopy and Deep Feature [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(7): 1289-1301. |
[9] | FAN Ruidong, HOU Chenping. Robust Auto-weighted Multi-view Subspace Clustering [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(6): 1062-1073. |
[10] | BAI Exiang, LUO Ke, LUO Xiao. Peak Density Clustering Algorithm Combining Natural and Shared Nearest Neighbor [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(5): 931-940. |
[11] | ZHANG Nini, GE Hongwei. Stable K Multiple-Means Clustering Algorithm [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(5): 941-948. |
[12] | MA Ruiqiang, SONG Baoyan, DING Linlin, WANG Junlu. Dynamic Matrix Clustering Method for Time Series Events [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(3): 468-477. |
[13] | XUE Hongyan, QIAN Xuezhong, ZHOU Shibing. Ensemble Clustering Algorithm Based on Weighted Super Cluster [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(12): 2362-2373. |
[14] | ZHANG Pei, ZHU En, CAI Zhiping. One-Stage Partition-Fusion Multi-view Subspace Clustering Algorithm [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(12): 2413-2420. |
[15] | YAO Xiaohong, HUANG Hengjun. Semi-supervised Clustering Method for Non-negative Functional Data [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(12): 2438-2448. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/