Journal of Frontiers of Computer Science and Technology ›› 2023, Vol. 17 ›› Issue (1): 88-107.DOI: 10.3778/j.issn.1673-9418.2204019
• Frontiers·Surveys • Previous Articles Next Articles
LI Gengsong, LIU Yi, QIN Wei, LI Hongmei, ZHENG Qibin, SONG Mingwu, REN Xiaoguang
Online:
2023-01-01
Published:
2023-01-01
李庚松,刘艺,秦伟,李红梅,郑奇斌,宋明武,任小广
LI Gengsong, LIU Yi, QIN Wei, LI Hongmei, ZHENG Qibin, SONG Mingwu, REN Xiaoguang. Survey on Meta-Learning Research of Algorithm Selection[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(1): 88-107.
李庚松, 刘艺, 秦伟, 李红梅, 郑奇斌, 宋明武, 任小广. 面向算法选择的元学习研究综述[J]. 计算机科学与探索, 2023, 17(1): 88-107.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2204019
[1] KERSCHKE P, HOOS H H, NEUMANN F, et al. Automated algorithm selection: survey and perspective[J]. Evolutionary Computation, 2019, 27(1): 3-45. [2] ADAM S P, ALEXANDROPOULOS S-A N, PARDALOS P M, et al. No free lunch theorem: a review[M]//DEMETRIOU I C, PARDALOS P M. Approximation and Optimization. Cham: Springer, 2019: 57-82. [3] RICE J R. The algorithm selection problem[M]//RUBINOFF M, YOVITS M C. Advances in Computers. Amsterdam: Elsevier, 1976: 65-118. [4] KHAN I, ZHANG X, MOBASHAR R, et al. A literature survey and empirical study of meta-learning for classifier selection[J]. IEEE Access, 2020, 8: 10262-10281. [5] ABDULRAHMAN S M, BRAZDIL P, VAN RIJN J N, et al. Speeding up algorithm selection using average ranking and active testing by introducing runtime[J]. Machine Learning, 2018, 107(1): 79-108. [6] YANG C, AKIMOTO Y, KIM D W, et al. OBOE: collaborative filtering for AutoML model selection[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Anchorage, Aug 4-8, 2019. New York: ACM, 2019: 1173-1183. [7] LINDAUER M, VAN RIJN J N, KOTTHOFF L. The algorithm selection competitions 2015 and 2017[J]. Artificial Intelligence, 2019, 272: 86-100. [8] VANSCHOREN J. Meta-learning[M]//HUTTER F, KOTTHOFF L, VANSCHOREN J. Automated Machine Learning: Methods, Systems, Challenges. Cham: Springer Nature, 2019: 35-61. [9] IMBREA A I. Automated machine learning techniques for data streams[J]. arXiv:2106.07317, 2021. [10] SMITH-MILES K A. Cross-disciplinary perspectives on meta-learning for algorithm selection[J]. ACM Computing Surveys, 2009, 41(1): 1-25. [11] 李凡长, 刘洋, 吴鹏翔, 等. 元学习研究综述[J]. 计算机学报, 2021, 44(2): 422-446. LI F Z, LIU Y, WU P X, et al. A survey on recent advances in meta-learning[J]. Chinese Journal of Computers, 2021, 44(2): 422-446. [12] ALCOBA?A E, SIQUEIRA F, RIVOLLI A, et al. MFE: towards reproducible meta-feature extraction[J]. Journal of Machine Learning Research, 2020, 21: 1-5. [13] ZHU X, LI Y, WANG J, et al. Automatic recommendation of a distance measure for clustering algorithms[J]. ACM Transactions on Knowledge Discovery from Data, 2021, 15(1): 1-22. [14] MONIZ N, CERQUEIRA V. Automated imbalanced classification via meta-learning[J]. Expert Systems with Applications, 2021, 178: 115011. [15] HUERTA I I, NEIRA D A, ORTEGA D A, et al. Anytime automatic algorithm selection for knapsack[J]. Expert Systems with Applications, 2020, 158: 113613. [16] 曾子林, 张宏军, 张睿, 等. 基于元学习思想的算法选择问题综述[J]. 控制与决策, 2014, 29(6): 961-968. ZENG Z L, ZHANG H J, ZHANG R, et al. Summary of algorithm selection problem based on meta-learning[J]. Control and Decision, 2014, 29(6): 961-968. [17] ZHU X, YING C, WANG J, et al. Ensemble of ML-KNN for classification algorithm recommendation[J]. Knowledge-Based Systems, 2021, 221: 106933. [18] LEMKE C, BUDKA M, GABRYS B. Metalearning: a survey of trends and technologies[J]. Artificial Intelligence Review, 2015, 44(1): 117-130. [19] BRAZDIL P, GIRAUD-CARRIER C. Metalearning and algorithm selection: progress, state of the art and introduction to the 2018 special issue[J]. Machine Learning, 2018, 107(1): 1-14. [20] RIVOLLI A, GARCIA L P F, SOARES C, et al. Meta-features for meta-learning[J]. Knowledge-Based Systems, 2022, 240: 108101. [21] MICHIE D, SPIEGELHALTER D J, TAYLOR C C. Machine learning, neural and statistical classification[M]. Chiche-ster: Ellis Horwood, 1994. [22] KING R D, FENG C, SUTHERLAND A. STATLOG: comparision of classification algorithms on large real-world problems[J]. Applied Artificial Intelligence, 1995, 9(3): 289-333. [23] LINDNER G, STUDER R. AST: support for algorithm selection with a CBR approach[C]//LNCS 1704: Proceedings of the 3rd European Conference on Principles of Data Mining and Knowledge Discovery, Prague, Sep 15-18, 1999. Berlin, Heidelberg: Springer, 1999: 418-423. [24] SONG Q, WANG G, WANG C. Automatic recommendation of classification algorithms based on data set characteristics[J]. Pattern Recognition, 2012, 45(7): 2672-2689. [25] LI L, WANG Y, XU Y, et al. Meta-learning based industrial intelligence of feature nearest algorithm selection framework for classification problems[J]. Journal of Manufacturing Systems, 2022, 62: 767-776. [26] PIMENTEL B A, DE CARVALHO A C P L F. Unsupervised meta-learning for clustering algorithm recommendation[C]//Proceedings of the 2019 International Joint Conference on Neural Networks, Budapest, Jul 14-19, 2019. Piscataway: IEEE, 2019: 1-8. [27] BARBON JR S, CERAVOLO P, DAMIANI E, et al. Using meta-learning to recommend process discovery methods[J]. arXiv:2103.12874, 2021. [28] PIMENTEL B A, DE CARVALHO A C P L F. A meta-learning approach for recommending the number of clusters for clustering algorithms[J]. Knowledge-Based Systems, 2020, 195: 105682. [29] PENG Y H, FLACH P A, SOARES C, et al. Improved dataset characterization for meta-learning[C]//Proceedings of the 5th International Conference on Discovery Science, Lübeck, Nov 24-26, 2002. Berlin, Heidelberg: Springer, 2002: 141-152. [30] GARCIA L P F, DE CARVALHO A C P L F, LORENA A C. Effect of label noise in the complexity of classification problems[J]. Neurocomputing, 2015, 160: 108-119. [31] LER D, TENG H, HE Y, et al. Algorithm selection for classification problems via cluster-based meta-features[C]//Proceedings of the 2018 IEEE International Conference on Big Data, Seattle, Dec 10-13, 2018. Piscataway: IEEE, 2018: 4952-4960. [32] BENSUSAN H, GIRAUD-CARRIER C. Discovering task neighbourhoods through landmark learning performances[C]//Proceedings of the 4th European Conference on Principles of Data Mining and Knowledge Discovery, Lyon, Sep 13-16, 2000. Berlin, Heidelberg: Springer, 2000: 325-330. [33] SOARES C, PETRAK J, BRAZDIL P. Sampling-based relative landmarks: systematically test-driving algorithms before choosing[C]//Proceedings of the 2001 Portuguese Conference on Artificial Intelligence, Porto, Dec 17-20, 2001. Berlin, Heidelberg: Springer, 2001: 88-95. [34] LEITE R, BRAZDIL P. Active testing strategy to predict the best classification algorithm via sampling and metalearning[C]//Proceedings of the 19th European Conference on Artificial Intelligence, Lisbon, Aug 16-20, 2010. Amsterdam: IOS Press, 2010: 309-314. [35] GABBAY I, SHAPIRA B, ROKACH L. Isolation forests and landmarking-based representations for clustering algorithm recommendation using meta-learning[J]. Information Sciences, 2021, 574: 473-489. [36] LORENA A C, GARCIA L P F, LEHMANN J, et al. How complex is your classification problem? A survey on measuring classification complexity[J]. ACM Computing Surveys, 2019, 52(5): 1-34. [37] LORENA A C, MACIEL A I, DE MIRANDA P B C, et al. Data complexity meta-features for regression problems[J]. Machine Learning, 2018, 107(1): 209-246. [38] PIMENTEL B A, DE CARVALHO A C P L F. A new data characterization for selecting clustering algorithms using meta-learning[J]. Information Sciences, 2019, 477: 203-219. [39] GARCIA L, LORENA A. ECoL: complexity measures for classification problems[EB/OL]. (2019-11-05) [2022-03-03]. https://CRAN.R-project. org/package=ECoL. [40] ALI S, SMITH K A. On learning algorithm selection for classification[J]. Applied Soft Computing, 2006, 6(2): 119-138. [41] PARMEZAN A R S, LEE H D, SPOLA?R N, et al. Automatic recommendation of feature selection algorithms based on dataset characteristics[J]. Expert Systems with Applications, 2021, 185: 115589. [42] ARJMAND A, SAMIZADEH R, DEHGHANI SARYAZDI M. Meta-learning in multivariate load demand forecasting with exogenous meta-features[J]. Energy Efficiency, 2020, 13(5): 871-887. [43] CHEN H, LIU Y, AHUJA J K. A distance-weighted class-homogeneous neighbourhood ratio for algorithm selection[C]//Proceedings of the 12th Asian Conference on Machine Learning, Bangkok, Nov 18-20, 2020: 1-16. [44] ZHANG X, LI R, ZHANG B, et al. An instance-based learning recommendation algorithm of imbalance handling methods[J]. Applied Mathematics and Computation, 2019, 351: 204-218. [45] OLIER I, SADAWI N, BICKERTON G R, et al. Meta-QSAR: a large-scale application of meta-learning to drug design and discovery[J]. Machine Learning, 2018, 107(1): 285-311. [46] CORRALES D C, LEDEZMA A, CORRALES J C. A case-based reasoning system for recommendation of data cleaning algorithms in classification and regression tasks[J]. Applied Soft Computing, 2020, 90: 106180. [47] GARCíA-SAIZ D, ZORRILLA M. A meta-learning based framework for building algorithm recommenders: an application for educational arena[J]. Journal of Intelligent & Fuzzy Systems, 2017, 32(2): 1449-1459. [48] GARCIA L P F, RIVOLLI A, ALCOBA E, et al. Boosting meta-learning with simulated data complexity measures[J]. Intelligent Data Analysis, 2020, 24(5): 1011-1028. [49] GARCIA L P F, CAMPELO F, RAMOS G N, et al. Evaluating clustering meta-features for classifier recommendation[C]//Proceedings of the 10th Brazilian Conference on Intelligent Systems, Brazil, Nov 29-Dec 3, 2021. Cham: Springer, 2021: 453-467. [50] TALAGALA T S, HYNDMAN R J, ATHANASOPOULOS G. Meta-learning how to forecast time series[J]. Monash Econometrics and Business Statistics Working Papers, 2018, 6(18): 30. [51] MU T, WANG H, ZHENG S, et al. Assassin: an automatic classification system based on algorithm selection[J]. Proceedings of the VLDB Endowment, 2021, 14(12): 2751-2754. [52] AGUIAR G J, SANTANA E J, DE CARVALHO A C P F L, et al. Using meta-learning for multi-target regression[J]. Information Sciences, 2022, 584: 665-684. [53] COHEN-SHAPIRA N, ROKACH L. Automatic selection of clustering algorithms using supervised graph embedding[J]. Information Sciences, 2021, 577: 824-851. [54] VAINSHTEIN R, GREENSTEIN-MESSICA A, KATZ G, et al. A hybrid approach for automatic model recommendation[C]//Proceedings of the 27th ACM International Conference on Information and Knowledge Management, Torino, Oct 22-26, 2018. New York: ACM, 2018: 1623-1626. [55] COHEN-SHAPIRA N, ROKACH L, SHAPIRA B, et al. AutoGRD: model recommendation through graphical dataset representation[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management, Beijing, Nov 3-7, 2019. New York: ACM, 2019: 821-830. [56] DROZDOV G, ZABASHTA A, FILCHENKOV A. Graph convolutional network based generative adversarial networks for the algorithm selection problem in classification[C]//Proceedings of the 2020 International Conference on Control, Robotics and Intelligent System, Xiamen, Oct 27-29, 2020. New York: ACM, 2020: 88-92. [57] KACHALSKY I, ZABASHTA A, FILCHENKOV A, et al. Generating datasets for classification task and predicting best classifiers with conditional generative adversarial networks[C]//Proceedings of the 3rd International Conference on Advances in Artificial Intelligence, Istanbul, Oct 26-28, 2019. New York: ACM, 2019: 97-101. [58] WANG G, SONG Q, ZHU X. Ensemble learning based classification algorithm recommendation[J]. arXiv:2101.05993, 2021. [59] Z?LLER M A, HUBER M F. Benchmark and survey of automated machine learning frameworks[J]. Journal of Artificial Intelligence Research, 2021, 70: 409-472. [60] YAKOVLEV A, MOGHADAM H F, MOHARRER A, et al. Oracle AutoML: a fast and predictive AutoML pipeline[J]. Proceedings of the VLDB Endowment, 2020, 13(12): 3166-3180. [61] MAHER M, SAKR S. SmartML: a meta learning-based framework for automated selection and hyperparameter tuning for machine learning algorithms[C]//Proceedings of the 22nd International Conference on Extending Database Technology, Lisbon, Mar 26-29, 2019: 554-557. [62] DYRMISHI S, ELSHAWI R, SAKR S. A decision support framework for AutoML systems: a meta-learning approach[C]//Proceedings of the 2019 International Conference on Data Mining, Beijing, Nov 8-11, 2019. Piscataway: IEEE, 2019: 97-106. [63] ABD ELRAHMAN A, EL HELW M, ELSHAWI R, et al. D-SmartML: a distributed automated machine learning framework[C]//Proceedings of the 40th IEEE International Conference on Distributed Computing Systems, Singapore, Nov 29-Dec 1, 2020. Piscataway: IEEE, 2020: 1215-1218. [64] FABRIS F. Meta-learning for hierarchical classification and applications in bioinformatics[J]. International Journal of Computer and Information Engineering, 2018, 12(7): 1-11. [65] CHALé M, BASTIAN N D, WEIR J. Algorithm selection framework for cyber attack detection[C]//Proceedings of the 2nd ACM Workshop on Wireless Security and Machine Learning, Linz, Jul 13, 2020. New York: ACM, 2020: 37-42. [66] DIAS L V, MIRANDA P B C, NASCIMENTO A C A, et al. ImageDataset2Vec: an image dataset embedding for algorithm selection[J]. Expert Systems with Applications, 2021, 180: 115053. [67] AGUIAR G J, MANTOVANI R G, MASTELINI S M, et al. A meta-learning approach for selecting image segmentation algorithm[J]. Pattern Recognition Letters, 2019, 128: 480-487. [68] VAN SONSBEEK T, CHEPLYGINA V. Predicting scores of medical imaging segmentation methods with meta-learning[J]. arXiv:2005.08869, 2020. [69] SMOLIAKOV D, KOROTIN A, EROFEEV P, et al. Meta-learning for resampling recommendation systems[C]//Proceedings of the 11th International Conference on Machine Vision, Munich, Nov 1-3, 2018. Bellingham: SPIE, 2018: 110411S. [70] KOTLAR M, PUNT M, RADIVOJEVIC Z, et al. Novel meta-features for automated machine learning model selection in anomaly detection[J]. IEEE Access, 2021, 9: 89675-89687. [71] 李睿峰, 许爱强, 孙伟超, 等. 基于元学习的航空电子设备特征选择算法推荐方法[J]. 系统工程与电子技术, 2021, 43(7): 2011-2020. LI R F, XU A Q, SUN W C, et al. Recommendation method for avionics feature selection algorithm based on meta-learning[J]. Systems Engineering and Electronics, 2021, 43(7): 2011-2020. [72] ADUVIRI R, MATOS D, VILLANUEVA E. Feature selection algorithm recommendation for gene expression data through gradient boosting and neural network metamodels[C]//Proceedings of the 2018 IEEE International Conference on Bioinformatics and Biomedicine, Madrid, Dec 3-6, 2018. Washington: IEEE Computer Society, 2018: 2726-2728. [73] CAO J, YUAN W, LI W, et al. Dynamic ensemble pruning selection using meta-learning for multi-sensor based activity recognition[C]//Proceedings of the 2019 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computing, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation, Leicester, Aug 19-23, 2019. Piscataway: IEEE, 2019: 1063-1068. [74] NURAL M V, PENG H, MILLER J A. Using meta-learning for model type selection in predictive big data analytics[C]//Proceedings of the 2017 IEEE International Conference on Big Data, Boston, Dec 11-14, 2017. Piscataway: IEEE, 2017: 2027-2036. [75] GüNG?R O, AK?ANLI B, AYDO?AN R. Algorithm selection and combining multiple learners for residential energy prediction[J]. Future Generation Computer Systems, 2019, 99: 391-400. [76] SHAHOUD S, KHALLOOF H, DUEPMEIER C, et al. Descriptive statistics time-based meta features (DSTMF): constructing a better set of meta features for model selection in energy time series forecasting[C]//Proceedings of the 3rd International Conference on Applications of Intelligent Systems, Las Palmas de Gran Canaria, Jan 7-9, 2020. New York: ACM, 2020: 1-6. [77] SHAHOUD S, KHALLOOF H, WINTER M, et al. A meta learning approach for automating model selection in big data environments using microservice and container virtualization technologies[C]//Proceedings of the 12th International Conference on Management of Digital EcoSystems, United Arab Emirates, Nov 2-4, 2020. New York: ACM, 2020: 84-91. [78] SHAHOUD S, WINTER M, KHALLOOF H, et al. An extended meta learning approach for automating model selection in big data environments using microservice and container virtualizationz technologies[J]. Internet of Things, 2021, 16: 100432. [79] CAIUTA R, POZO A, VERGILIO S R. Meta-learning based selection of software reliability models[J]. Automated Software Engineering, 2017, 24(3): 575-602. [80] COLLINS A, TIERNEY L, BEEL J. Per-instance algorithm selection for recommender systems via instance clustering[J]. arXiv:2012.15151, 2020. [81] POLATIDIS N, KAPETANAKIS S, PIMENIDIS E. Recommender systems algorithm selection using machine learning[C]//Proceedings of the 22nd Engineering Applications of Neural Networks Conference, Crete, Jun 25-27, 2021. Cham: Springer, 2021: 477-487. [82] 任义, 迟翠容, 单菁, 等. 基于元学习的推荐算法选择优化框架实证[J]. 计算机工程与设计, 2020, 41(6): 1610-1616. REN Y, CHI C R, SHAN J, et al. Empirical study on recommendation algorithm selection optimization framework based on meta-learning[J]. Computer Engineering and Design, 2020, 41(6): 1610-1616. [83] ALGHOFAILY B, DING C. Meta-feature based data mining service selection and recommendation using machine learning models[C]//Proceedings of the 15th IEEE International Conference on E-Business Engineering, Xi’an, Oct 12-14, 2018. Piscataway: IEEE, 2018: 17-24. [84] FERNANDES L H S, SOUTO M C P, LORENA A C. Evaluating data characterization measures for clustering problems in meta-learning[C]//LNCS 13108: Proceedings of the 28th International Conference on Neural Information Processing, Sanur, Dec 8-12, 2021. Cham: Springer, 2021: 621-632. [85] PEDREGOSA F, VAROQUAUX G, GRAMFORT A, et al. Scikit-learn: machine learning in Python[J]. Journal of Machine Learning Research, 2011, 12: 2825-2830. [86] CHOLLET F. Keras[EB/OL]. [2022-03-03]. https://keras.io. [87] BRAZDIL P B, SOARES C. Ranking learning algorithms: using IBL and meta-learning on accuracy and time results[J]. Machine Learning, 2003, 50: 251-277. [88] ABDULRAHMAN S M, BRAZDIL P, ZAINON W M N W, et al. Simplifying the algorithm selection using reduction of rankings of classification algorithms[C]//Proceedings of the 8th International Conference on Software and Computer Applications, Penang, Feb 19-21, 2019. New York: ACM, 2019: 140-148. [89] ROSSI A L D, SOARES C, DE SOUZA B F, et al. Micro-MetaStream: algorithm selection for time-changing data[J]. Information Sciences, 2021, 565: 262-277. [90] SHAKER A, GARTNER C, HE X, et al. Online meta-forest for regression data streams[C]//Proceedings of the 2020 International Joint Conference on Neural Networks, Glasgow, Jul 19-24, 2020. Piscataway: IEEE, 2020: 1-8. |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/