[1] 董如意. 元启发式优化算法研究与应用[D]. 长春: 吉林大学, 2019.
DONG R Y. Research and application of meta-heuristic opt-imization algorithms[D]. Changchun: Jilin University, 2019.
[2] EBERHART R, KENNEDY J. A new optimizer using par-ticle swarm theory[C]//Proceedings of the 6th International Symposium on Micro Machine and Human Science, Nagoya, Oct 4-6, 1995. Piscataway: IEEE, 1995: 39-43.
[3] ARORA S, SINGH S. Butterfly optimization algorithm: a novel approach for global optimization[J]. Soft Computing, 2019, 23(3): 715-734.
[4] MIRJALILI S. Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm[J]. Knowledge-Based Sys- tems, 2015, 89: 228-249.
[5] ZHAO W, WANG L, ZHANG Z. A novel atom search opti-mization for dispersion coefficient estimation in ground-water[J]. Future Generation Computer Systems, 2019, 91:601-610.
[6] MIRJALILI S, MIRJALILI S M, HATAMLOU A. Multi-verse optimizer: a nature-inspired algorithm for global optim-ization[J]. Neural Computing and Applications, 2016, 27(2): 495-513.
[7] MIRJALILI S, LEWIS A. The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95: 51-67.
[8] MIRJALILI S, MIRJALILI S M, LEWIS A. Grey wolf opti-mizer[J]. Advances in Engineering Software, 2014, 69: 46-61.
[9] 王振东, 刘尧迪, 胡中栋, 等. 利用改进灰狼算法优化BP神经网络的入侵检测[J]. 小型微型计算机系统, 2021, 42(4): 875-884.
WANG Z D, LIU Y D, HU Z D, et al. Use improved grey wolf algorithm to optimize BP neural network intrusion detection[J]. Journal of Chinese Computer Systems, 2021, 42(4): 875-884.
[10] 刘威, 付杰, 周定宁, 等. 基于改进郊狼优化算法的浅层神经进化方法研究[J]. 计算机学报, 2021, 44(6): 1200-1213.
LIU W, FU J, ZHOU D N, et al. Research on shallow neural network evolution method based on improved coyote optimization algorithm[J]. Chinese Journal of Computers, 2021, 44(6): 1200-1213.
[11] 王勇亮, 王挺, 姚辰. 基于Kent映射和自适应权重的灰狼优化算法[J]. 计算机应用研究, 2020, 37(S2): 37-40.
WANG Y L, WANG T, YAO C. Gray wolf optimization algorithm based on Kent mapping and adaptive weight[J].Application Research of Computers, 2020, 37(S2): 37-40.
[12] 晏福, 徐建中, 李奉书. 混沌灰狼优化算法训练多层感知器[J]. 电子与信息学报, 2019, 41(4): 872-879.
YAN F, XU J Z, LI F S. Training multi-layer perceptrons using chaos grey wolf optimizer[J]. Journal of Electronics & Information Technology, 2019, 41(4): 872-879.
[13] 张孟健, 张浩, 陈曦, 等. 基于Cubic映射的灰狼优化算法及应用[J]. 计算机工程与科学, 2021, 43(11): 2035-2042.
ZHANG M J, ZHANG H, CHEN X, et al. A grey wolf optimization algorithm based on Cubic mapping and its application[J]. Computer Engineering and Science, 2021, 43(11): 2035-2042.
[14] 龙文, 伍铁斌, 唐明珠, 等. 基于透镜成像学习策略的灰狼优化算法[J]. 自动化学报, 2020, 46(10): 2148-2164.
LONG W, WU T B, TANG M Z, et al. Grey wolf optimizer algorithm based on lens imaging learning strategy[J]. Acta Automatica Sinica, 2020, 46(10): 2148-2164.
[15] 顾清华, 李学现, 卢才武, 等. 求解高维复杂函数的遗传-灰狼混合算法[J]. 控制与决策, 2020, 35(5): 1191-1198.
GU Q H, LI X X, LU C W, et al. Hybrid genetic grey wolf algorithm for high dimensional complex function optim-ization[J]. Control and Decision, 2020, 35(5): 1191-1198.
[16] 张新明, 王霞, 康强. 改进的灰狼优化算法及其高维函数和FCM优化[J]. 控制与决策, 2019, 34(10): 2073-2084.
ZHANG X M, WANG X, KANG Q. Improved grey wolf optimizer and its application to high-dimensional function and FCM optimization[J]. Control and Decision, 2019, 34(10): 2073-2084.
[17] 张兴辉, 樊秀梅, 阿喜达, 等. 反向学习的灰狼算法优化及其在交通流预测中的应用[J]. 电子学报, 2021, 49(5): 879-886.
ZHANG X H, FAN X M, SHAN Axida, et al. Grey wolf optimization based on opposition learning and its applic-ation in traffic flow forecasting[J]. Acta Electronica Sinica, 2021, 49(5): 879-886.
[18] 周蓉, 李俊, 王浩. 基于灰狼优化的反向学习粒子群算法[J]. 计算机工程与应用, 2020, 56(7): 48-56.
ZHOU R, LI J, WANG H. Reverse learning particle swarm optimization based on grey wolf optimization[J]. Computer Engineering and Applications, 2020, 56(7): 48-56.
[19] MITTAL N, SINGH U, SOHI B S. Modified grey wolf optimizer for global engineering optimization[J]. Applied Computational Intelligence and Soft Computing, 2016: 197-212.
[20] LONG W, JIAO J, LIANG X, et al. Inspired grey wolf optimizer for solving large-scale function optimization pro-blems[J]. Applied Mathematical Modelling, 2018, 60: 112- 126.
[21] 魏政磊, 赵辉, 李牧东, 等. 控制参数值非线性调整策略的灰狼优化算法[J]. 空军工程大学学报(自然科学版), 2016, 17(3): 68-72.
WEI Z L, ZHAO H, LI M D, et al. A grey wolf optim-ization algorithm based on non-linear adjustment strategy of control parameter[J]. Journal of Air Force Engineering University (Natural Science Edition), 2016, 17(3): 68-72.
[22] 张铸, 饶盛华, 张仕杰. 基于自适应正态云模型的灰狼优化算法[J]. 控制与决策, 2021, 36(10): 2562-2568.
ZHANG Z, RAO S H, ZHANG S J. Grey wolf optim-ization algorithm based on adaptive normal cloud model[J]. Control and Decision, 2021, 36(10): 2562-2568.
[23] 张新明, 姜云, 刘尚旺, 等. 灰狼与郊狼混合优化算法及其聚类优化[J]. 自动化学报, 2022, 48(11): 2757-2776.
ZHANG X M, JIANG Y, LIU S W, et al. Hybrid coyote optimization algorithm with grey wolf optimizer and its application to clustering optimization[J]. Acta Automatica Sinica, 2022, 48(11): 2757-2776.
[24] 黄晨晨, 魏霞, 黄德启, 等. 求解高维复杂函数的混合蛙跳-灰狼优化算法[J]. 控制理论与应用, 2020, 37(7): 1655- 1666.
HUANG C C, WEI X, HUANG D Q, et al. Shuffled frog leaping grey wolf algorithm for solving high dimensional complex functions[J]. Control Theory & Applications, 2020, 37(7): 1655-1666.
[25] WOLPERT D H, MACREADY W G. No free lunch theo-rems for optimization[J]. IEEE Transactions on Evolutionary Computation, 1997, 1(1): 67-82.
[26] 王敏, 唐明珠. 融合对立学习的混合灰狼优化算法[J]. 计算机科学与探索, 2017, 11(4): 673-680.
WANG M, TANG M Z. Hybrid grey wolf optimization algorithm with opposition-based learning[J]. Journal of Fron-tiers of Computer Science and Technology, 2017, 11(4): 673-680.
[27] DERRAC J, GARCíA S, MOLINA D, et al. A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelli-gence algorithms[J]. Swarm and Evolutionary Computation,2011, 1(1): 3-18.
[28] 陈忠云, 张达敏, 辛梓芸. 多子群的共生非均匀高斯变异樽海鞘群算法[J]. 自动化学报, 2022, 48(5): 1307-1317.
CHEN Z Y, ZHANG D M, XIN Z Y. Multi-subpopulation based symbiosis and non-uniform Gaussian mutation salp swarm algorithm[J]. Acta Automatica Sinica, 2022, 48(5): 1307-1317.
[29] NABIL E. A modified flower pollination algorithm for global optimization[J]. Expert Systems with Applications, 2016, 57: 192-203.
[30] 张孟健, 龙道银, 王霄, 等. 基于马尔科夫链的灰狼优化算法收敛性研究[J]. 电子学报, 2020, 48(8): 1587-1595.
ZHANG M J, LONG D Y, WANG X, et al. Research on convergence of grey wolf optimization algorithm based on Markov chain[J]. Acta Electronica Sinica, 2020, 48(8): 1587-1595.
[31] 凤丽洲, 王友卫, 韩琳琳, 等. 双重驱动的果蝇优化算法及其在PID控制器中的应用[J]. 控制与决策, 2021, 36(9): 2225-2233.
FENG L Z, WANG Y W, HAN L L, et al. Double drive fruit fly optimization algorithm and its application in PID controller[J]. Control and Decision, 2021, 36(9): 2225-2233.
[32] 曾喆昭, 陈泽宇. 论PID与自耦PID控制理论方法[J]. 控制理论与应用, 2020, 37(12): 2654-2662.
ZENG Z Z, CHEN Z Y. On control theory of PID and auto-coupling PID[J]. Control Theory & Applications, 2020, 37(12): 2654-2662.
[33] 陈超波, 胡海涛, 高嵩. 人工蜂群的分数阶PID控制器参数自适应研究[J]. 控制工程, 2020, 27(6): 956-961.
CHEN C B, HU H T, GAO S. Parameters adaptive design of fractional order PID controller based on artificial bee colony algorithm[J]. Control Engineering of China, 2020, 27(6): 956-961. |