Journal of Frontiers of Computer Science and Technology ›› 2024, Vol. 18 ›› Issue (1): 1-23.DOI: 10.3778/j.issn.1673-9418.2304032
• Frontiers·Surveys • Previous Articles Next Articles
CAO Jie, HUANG Han, LEI Fengqiang, LIU Fangqing
Online:
2024-01-01
Published:
2024-01-01
曹捷,黄翰,雷丰强,刘方青
CAO Jie, HUANG Han, LEI Fengqiang, LIU Fangqing. Overview of Android Intelligent Terminal Automation Testing Technology[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(1): 1-23.
曹捷, 黄翰, 雷丰强, 刘方青. 安卓智能终端自动化测试技术综述[J]. 计算机科学与探索, 2024, 18(1): 1-23.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2304032
[1] The China academy of information and communications technology (CAICT)[EB/OL]. (2023-02-17) [2023-04-10]. http://www.caict.ac.cn/. [2] 郑炜, 唐辉, 陈翔, 等. 安卓移动应用兼容性测试综述[J]. 计算机研究与发展, 2022, 59(6): 1370-1387. ZHENG W, TANG H, CHEN X, et al. State-of-the-art survey of compatibility test for Android mobile application[J]. Journal of Computer Research and Development, 2022, 59(6): 1370-1387. [3] MIUI 14 a new lease of life[EB/OL]. [2023-04-10]. https://home.miui.com/. [4] Flyme official home page[EB/OL]. [2023-04-10]. https://www. flyme.com/. [5] BRANT C D, YAVUZ T. A study on the testing of android security patches[C]//Proceedings of the 2022 IEEE Conference on Communications and Network Security, Austin, Oct 3-5, 2022. Piscataway: IEEE, 2022: 217-225. [6] SRIVASTAVA P R. Estimation of software testing effort: an intelligent approach[C]//Proceedings of the 20th International Symposium on Software Reliability Engineering, 2009. [7] BOSE J. A state-of-the-art analysis of Android malware detection methods[C]//Proceedings of the 2022 6th International Conference on Trends in Electronics and Informatics, Tirunelveli, Apr 28-30, 2022. Piscataway: IEEE, 2022: 851-855. [8] Pinduoduo App malware detailed by cybersecurity researchers[EB/OL]. [2023-04-09]. https://www.theedgemarkets.com/node/660899. [9] PAN M, XU T, PEI Y, et al. GUI-guided test script repair for mobile apps[J]. IEEE Transactions on Software Engineering, 2022, 48(3): 910-929. [10] DA Z, TAO Q, CHEN L. Research on automated testing framework for multi-platform mobile applications[C]//Proceedings of the 2016 4th International Conference on Cloud Computing and Intelligence Systems, Beijing, Aug 17-19, 2016. Piscataway: IEEE, 2016. [11] YU S, FANG C, FENG Y, et al. LIRAT: layout and image recognition driving automated mobile testing of cross-platform[C]//Proceedings of the 2019 34th IEEE/ACM International Conference on Automated Software Engineering, Diego, Nov 11-15, 2019. Piscataway: IEEE, 2019: 1066-1069. [12] MOHAMED I, PATEL D. Android vs iOS security: a comparative study[C]//Proceedings of the 2015 12th International Conference on Information Technology-New Generations, Vegas, Apr 13-15, 2015. Piscataway: IEEE, 2015: 725-730. [13] KAZMI Z, FELGUERA T, VILA J A, et al. TASAM-towards the smart devices app-stores applications security management related best practices[C]//Proceedings of the 2012 International Conference on New Technologies, Istanbul, May 7-10, 2012. Piscataway: IEEE, 2012: 1-5. [14] BENENSON Z, GASSMANN F, REINFELDER L. Android and iOS users’ differences concerning security and privacy[C]//Proceedings of the 2013 ACM SIGCHI Conference on Human Factors in Computing Systems, Paris, Apr 27-May 2, 2013. New York: ACM, 2013: 817-822. [15] WANG H, LIU Z, LIANG J, et al. Beyond google play: a large-scale comparative study of Chinese Android app markets[C]//Proceedings of the Internet Measurement Conference 2018, Boston, Oct 31-Nov 2, 2018. New York: ACM, 2018: 293-307. [16] HarmonyOS development_HarmonyOS ecology_HarmonyOS OS application device development-HarmonyOS official website[EB/OL]. [2023-04-10]. https://www.harmonyos.com/cn/develop. [17] Tutorials Archive-Fuchsia OS Chinese community[EB/OL]. [2023-04-10]. https://fuchsia-china.com/toturial/. [18] Official Website for Android Application Developers. Provides Android SDK tools and API documentation[EB/OL]. [2023-04-10]. https://developer.android.google.cn/. [19] OH H S, KIM B J, CHOI H K, et al. Evaluation of Android Dalvik virtual machine[C]//Proceedings of the 10th International Workshop on Java Technologies for Real-Time and Embedded Systems, Copenhagen, Oct 24-26, 2012. New York: ACM, 2012: 115-124. [20] FIKRI A, PRESEKAL A, SARI R F, et al. Performance comparison of Dalvik and ART on different Android-based mobile devices[C]//Proceedings of the 2018 IEEE International Seminar on Research of Information Technology & Intelligent Systems, Yogyakarta, Nov 20-22, 2018. Piscataway: IEEE, 2019. [21] ALéGROTH E, GAO Z, OLIVEIRA R, et al. Conceptualization and evaluation of component-based testing unified with visual GUI testing: an empirical study[C]//Proceedings of the 2015 IEEE 8th International Conference on Software Testing, Verification and Validation, Graz, Apr 13-17, 2015. Piscataway: IEEE, 2015: 1-10. [22] Appium: automation for apps[EB/OL]. [2023-04-10]. http://appium.io/docs/cn/about-appium/intro/. [23] UI Automator is an interface testing framework for system-wide and cross-application functional interface testing across multiple installed applications[EB/OL]. [2023-04-10]. https://developer. Android.google.cn/training/testing/ui-automator. [24] COPPOLA R, ARDITO L, TORCHIANO M. Fragility of layout-based and visual GUI test scripts: an assessment study on a hybrid mobile application[C]//Proceedings of the 10th ACM SIGSOFT International Workshop on Automating Test Case Design, Selection, and Evaluation, Tallinn, Aug 26-27, 2019. New York: ACM, 2019: 28-34. [25] Airtest Project Docs[EB/OL]. [2023-04-10]. https://airtest. doc.io.netease.com/. [26] LI X, ZHOU D, ZHANG L, et al. Human-like UI automation through automatic exploration[C]//Proceedings of the 2020 2nd International Conference on Big Data and Artificial Intelligence, Johannesburg, Apr 28-30, 2020. New York: ACM, 2020: 47-53. [27] UI/application exerciser Monkey[EB/OL]. [2023-04-10]. https://developer.Android.google.cn/studio/test/monkey. [28] MACHIRY A, TAHILIANI R, NAIK M. Dynodroid: an input generation system for Android apps[C]//Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering, Saint Petersburg, Aug 18-26, 2013. New York: ACM, 2013: 224-234. [29] LI Y, YANG Z, GUO Y, et al. DroidBot: a lightweight UI-guided test input generator for Android[C]//Proceedings of the 2017 IEEE/ACM 39th International Conference on Software Engineering Companion, Buenos, May 20-28, 2017. Piscataway: IEEE, 2017: 23-26. [30] JAMROZIK K, ZELLER A. DroidMate: a robust and extensible test generator for Android[C]//Proceedings of the 2016 International Conference on Mobile Software Engineering and Systems, Austin, May 14-22, 2016. New York: ACM, 2016: 293-294. [31] LI Y, YANG Z, GUO Y, et al. Humanoid: a deep learning-based approach to automated black-box Android app testing[C]//Proceedings of the 2019 34th IEEE/ACM International Conference on Automated Software Engineering, San Diego, Nov 11-15, 2019. Piscataway: IEEE, 2019: 1070-1073. [32] 叶佳, 葛红军, 曹春, 等. 规则驱动的Android应用DFS测试技术[J]. 计算机科学, 2018, 45(9): 99-103. YE J, GE H J, CAO C, et al. Rule-driven DFS testing technolohy for Aandroid application[J]. Computer Science, 2018, 45(9): 99-103. [33] ADAMO D, KHAN M K, KOPPULA S, et al. Reinforcement learning for Android GUI testing[C]//Proceedings of the 9th ACM SIGSOFT International Workshop on Automating Test Case Design, Selection, and Evaluation, Lake Buena Vista, Nov 5, 2018. New York: ACM, 2018: 2-8. [34] HU G, ZHU L, YANG J. AppFlow: using machine learning to synthesize robust, reusable UI tests[C]//Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering, Lake Buena Vista, Nov 4-9, 2018. New York: ACM, 2018: 269-282. [35] BORGES JR N P. Data flow oriented UI testing: exploiting data flows and UI elements to test Android applications[C]//Proceedings of the 26th ACM SIGSOFT International Symposium on Software Testing and Analysis, Santa Barbara, Jul 10-14, 2017. New York: ACM, 2017: 432-435. [36] ARTHO C, MA L. Classification of randomly generated test cases[C]//Proceedings of the 2016 IEEE 23rd International Conference on Software Analysis, Evolution, and Reengineering, Osaka, Mar 14-18, 2016. Piscataway: IEEE, 2016, 2: 29-32. [37] CHEN T Y, HUANG D H, KUO F C. Adaptive random testing by balancing[C]//Proceedings of the 2nd International Workshop on Random Testing: Co-located with the 22nd IEEE/ACM International Conference on Automated Software Engineering, Atlanta, Nov 6, 2007. New York: ACM, 2007: 2-9. [38] CSALLNER C, SMARAGDAKIS Y. JCrasher: an automatic robustness tester for Java[J]. Software: Practice and Experience, 2004, 34(11): 1025-1050. [39] PACHECO C, LAHIRI S K, ERNST M D, et al. Feedback-directed random test generation[C]//Proceedings of the 29th International Conference on Software Engineering, Minneapolis, May 20-26, 2007. Piscataway: IEEE, 2007: 75-84. [40] YATOH K, SAKAMOTO K, ISHIKAWA F, et al. Feedback-controlled random test generation[C]//Proceedings of the 2015 International Symposium on Software Testing and Analysis, Baltimore, Jul 13-17, 2015. New York: ACM, 2015: 316-326. [41] CADAR C, SEN K. Symbolic execution for software testing: three decades later[J]. Communications of the ACM, 2013, 56(2): 82-90. [42] MIRZAEI N, MALEK S, P?S?REANU C S, et al. Testing Android apps through symbolic execution[J]. ACM SIGSOFT Software Engineering Notes, 2012, 37(6): 1-5. [43] LUO L, ZENG Q, CAO C, et al. System service call-oriented symbolic execution of Android framework with applications to vulnerability discovery and exploit generation[C]//Proceedings of the 15th Annual International Conference on Mobile Systems, Applications, and Services, New York, Jun 19-23, 2017. New York: ACM, 2017: 225-238. [44] GAO X, TAN S H, DONG Z, et al. Android testing via synthetic symbolic execution[C]//Proceedings of the 33rd ACM/ IEEE International Conference on Automated Software Engineering, Montpellier, Sep 3-7, 2018. New York: ACM, 2018: 419-429. [45] HARMAN M, JONES B F. Search-based software engineering[J]. Information and software Technology, 2001, 43(14): 833-839. [46] YANG X S. Engineering optimization: an introduction with metaheuristic applications[M]. Hoboken: John Wiley & Sons, 2010. [47] PANICHELLA A, CAMPOS J, FRASER G. EvoSuite at the SBST 2020 tool competition[C]//Proceedings of the 42nd IEEE/ACM International Conference on Software Engineering Workshops, Seoul, Jun 27-Jul 19, 2020. New York: ACM, 2020: 549-552. [48] FRASER G, ARCURI A. Whole test suite generation[J]. IEEE Transactions on Software Engineering, 2013, 39(2): 276-291. [49] ZHU Z, JIAO L. Improving search-based software testing by constraint-based genetic operators[C]//Proceedings of the Genetic and Evolutionary Computation Conference, Prague, Jul 13-17, 2019. New York: ACM, 2019: 1435-1442. [50] CRUZ-SALINAS A F, PERDOMO J G. Self-adaptation of genetic operators through genetic programming techniques[C]//Proceedings of the Genetic and Evolutionary Computation Conference, Berlin, Jul 15-19, 2017. New York: ACM, 2017: 913-920. [51] DOERR B, LE H P, MAKHMARA R, et al. Fast genetic algorithms[C]//Proceedings of the Genetic and Evolutionary Computation Conference, Berlin, Jul 15-19, 2017. New York: ACM, 2017: 777-784. [52] KIM J, MOON B R. A genetic algorithm for linear ordering problem using an approximate fitness evaluation[C]//Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation, Vancouver, Jul 12-16, 2014. New York: ACM, 2014: 1461-1462. [53] 杨瑞, 陈振宇, 张智轶, 等. 一种基于扩展有限状态机的自动化测试用例生成方法[J]. 中国科学: 信息科学, 2014, 44(5): 588-609. YANG R, CHEN Z Y, ZHANG Z Y, et al. A new approach of automated test case generation on extended finite state machine[J]. Science in China: Information Sciences, 2014, 44(5): 588-609. [54] WANG S, ALI S, YUE T, et al. UPMOA: an improved search algorithm to support user-preference multi-objective optimization[C]//Proceedings of the 2015 IEEE 26th International Symposium on Software Reliability Engineering, Gaithersbury, Nov 2-5, 2015. Piscataway: IEEE, 2015: 393-404. [55] XU X, ZHU Z, JIAO L. An adaptive fitness function based on branch hardness for search based testing[C]//Proceedings of the Genetic and Evolutionary Computation Conference, Berlin, Jul 15-19, 2017. New York: ACM, 2017: 1335-1342. [56] XU X, JIAO L, ZHU Z. A dynamic fitness function for search based software testing[C]//Proceedings of the Genetic and Evolutionary Computation Conference Companion, Kyoto, Jul 15-19, 2018. New York: ACM, 2018: 320-321. [57] BRAIONE P, DENARO G, MATTAVELLI A, et al. Combining symbolic execution and search-based testing for programs with complex heap inputs[C]//Proceedings of the 26th ACM SIGSOFT International Symposium on Software Testing and Analysis, Santa Barbara, Jul 10-14, 2017. New York: ACM, 2017: 90-101. [58] KIM J, KWON M, YOO S. Generating test input with deep reinforcement learning[C]//Proceedings of the 11th International Workshop on Search-Based Software Testing, Gothenburg, May 28-29. 2018. New York: ACM, 2018: 51-58. [59] AYARI K, BOUKTIF S, ANTONIOL G. Automatic mutation test input data generation via ant colony[C]//Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation, London, Jul 7-11, 2007. New York: ACM, 2007: 1074-1081. [60] JI F. Research on software testing automation mechanism based on improved genetic algorithms[J]. Information Technology, 2019 (10): 88-93. [61] 张大林, 张哲玮, 王楠, 等. AutoUnit: 基于主动学习和预测引导的测试自动生成[J]. 计算机科学, 2022, 49(11): 39-48. ZHANG D L, ZHANG Z W, WANG L, et al. AutoUnit: automatic test generation based on active learning and prediction guidance[J]. Computer Science, 2022, 49(11): 39-48. [62] PADURARU C, MELEMCIUC M C, STEFANESCU A. A distributed implementation using apache spark of a genetic algorithm applied to test data generation[C]//Proceedings of the Genetic and Evolutionary Computation Conference, Berlin, Jul 15-19, 2017. New York: ACM, 2017: 1857-1863. [63] FERGUSON R, KOREL B. The chaining approach for software test data generation[J]. ACM Transactions on Software Engineering and Methodology, 1996, 5(1): 63-86. [64] KOREL B, AL-YAMI A M. Assertion-oriented automated test data generation[C]//Proceedings of the IEEE 18th International Conference on Software Engineering, Berlin, Mar 25-30, 1996. Piscataway: IEEE, 1996: 71-80. [65] ENCK W, GILBERT P, HAN S, et al. TaintDroid: an information-flow tracking system for realtime privacy monitoring on smartphones[J]. ACM Transactions on Computer Systems, 2014, 32(2): 1-29. [66] XU R, SA?DI H, ANDERSON R. Aurasium: practical policy enforcement for Android applications[C]//Proceedings of the 21st USENIX Security Symposium, Bellevue, Aug 8-10, 2012. Berkeley: USENIX, 2012: 539-552. [67] TAM K, KHAN S J, FATTORI A, et al. CopperDroid: automatic reconstruction of Android malware behaviors[C]//Proceedings of the 2015 Network and Distributed System Security Symposium, San Diego, Feb 8-11, 2015. Reston: Internet Society, 2015: 1-15. [68] ARZT S, RASTHOFER S, FRITZ C, et al. FlowDroid: precise context, flow, field, object-sensitive and lifecycle-aware taint analysis for Android apps[J]. ACM SIGPLAN Notices, 2014, 49(6): 259-269. [69] VALLéE-RAI R, CO P, GAGNON E, et al. Soot: a Java bytecode optimization framework[C]//Proceedings of the 1999 Conference of the Centre for Advanced Studies on Collaborative Research, Mississauga, Nov 8-11, 1999. [70] 王蕾, 周卿, 何冬杰, 等. 面向Android应用隐私泄露检测的多源污点分析技术[J]. 软件学报, 2019, 30(2): 211-230. WANG L, ZHOU Q, HE D J, et al. Multi-source taint analysis technique for privacy leak detection of Android apps[J]. Journal of Software, 2019, 30(2): 211-230. [71] WEI F, ROY S, OU X. Amandroid: a precise and general inter-component data flow analysis framework for security vetting of Android apps[J]. ACM Transactions on Privacy and Security, 2018, 21(3): 1-32. [72] Gordon M I, Kim D, Perkins J H, et al. Information flow analysis of Android applications in droidsafe[C]//Proceedings of the 2015 Network and Distributed System Security Symposium, San Diego, Feb 8-11, 2015. Reston: Internet Society, 2015: 110. [73] CHEN K, LIU P, ZHANG Y. Achieving accuracy and scalability simultaneously in detecting application clones on Android markets[C]//Proceedings of the 36th International Conference on Software Engineering, Hyderabad, May 31-Jun 7, 2014. New York: ACM, 2014: 175-186. [74]LIN J, LIU B, SADEH N, et al. Modeling users’ mobile app privacy preferences: restoring usability in a sea of permission settings[C]//Proceedings of the 10th Symposium on Usable Privacy and Security, Menlo Park, Jul 9-11, 2014. Berkeley: USENIX, 2014: 199-212. [75] ZHOU W, ZHOU Y, JIANG X, et al. Detecting repackaged smartphone applications in third-party Android marketplaces[C]//Proceedings of the 2nd ACM Conference on Data and Application Security and Privacy, San Antonio, Feb 7-9, 2012. New York: ACM, 2012: 317-326. [76] LIU B, LIU B, JIN H, et al. Efficient privilege de-escalation for ad libraries in mobile apps[C]//Proceedings of the 13th Annual International Conference on Mobile Systems, Applications, and Services, Florence, May 18-22, 2015. New York: ACM, 2015: 89-103. [77] ISHIO T, KULA R G, KANDA T, et al. Software ingredients: detection of third-party component reuse in Java software release[C]//Proceedings of the 13th International Conference on Mining Software Repositories, Austin, May 14-22, 2016. New York: ACM, 2016: 339-350. [78] BACKES M, BUGIEL S, DERR E. Reliable third-party library detection in Android and its security applications[C]//Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, Vienna, Oct 24-28, 2016. New York: ACM, 2016: 356-367. [79] 黄思荣, 陶非凡, 张源, 等. LibSeeker: 参数自整定的安卓应用第三方库检测方法[J]. 小型微型计算机系统, 2019, 40(2): 332-340. HUANG S R, TAO F F, ZHANG Y, et al. LibSeeker: detecting Android third-party libraries using parameter auto-tuning[J]. Journal of Chinese Computer Systems, 2019, 40(2): 332-340. [80] XIAO J, CHEN S, HE Q, et al. An Android application risk evaluation framework based on minimum permission set identification[J]. Journal of Systems and Software, 2020, 163: 110533. [81] 徐尉, 吴敬征. Android权限滥用检测系统[J]. 计算机系统应用, 2016, 25(10): 39-46. XU W, WU J Z. Abused detection system of Android[J]. Computer Systems & Applications, 2016, 25(10): 39-46. [82] LIU Z, XIA X, LO D, et al. Automatic, highly accurate app permission recommendation[J]. Automated Software Engineering, 2019, 26: 241-274. [83] YU L, LUO X, QIAN C, et al. Enhancing the description-to-behavior fidelity in Android apps with privacy policy[J]. IEEE Transactions on Software Engineering, 2017, 44(9): 834-854. [84] LIU F, HUANG H, SU J, et al. Manifold-inspired search-based algorithm for automated test case generation[J]. IEEE Transactions on Emerging Topics in Computing, 2022, 10(2): 1075-1090. [85] 黄翰, 曹捷, 叶垒, 等. 交互式测试用例的自动生成方法: CN112506766A[P]. 广州: 华南理工大学, 2021. HUANG H, CAO J, YE L, et al. Automatic generation of interactive test cases: CN112506766A[P]. Guangzhou: South China University of Technology, 2021. [86] CAO J, HUANG H, LIU F. Android unit test case generation based on the strategy of multi-dimensional coverage[C]//Proceedings of the 2021 IEEE 7th International Conference on Cloud Computing and Intelligent Systems, Xi’an, Nov 7-8, 2021. Piscataway: IEEE, 2021: 114-121. [87] ZHAO W X, ZHOU K, LI J, et al. A survey of large language models[J]. arXiv:2303.18223, 2023. [88] MATHUR A, PRADHAN S, SONI P, et al. Automated test case generation using T5 and GPT-3[C]//Proceedings of the 2023 9th International Conference on Advanced Computing and Communication Systems, Coimbatore, Mar 17-18, 2023. Piscataway: IEEE, 2023, 1: 1986-1992. [89] ZIMMERMANN D, KOZIOLEK A. Automating GUI-based software testing with GPT-3[C]//Proceedings of the 2023 IEEE International Conference on Software Testing, Verification and Validation Workshops, Dublin, Apr 16-20, 2023. Piscataway: IEEE, 2023: 62-65. [90] PRENNER J A, BABII H, ROBBES R. Can OpenAI??s codex fix bugs? An evaluation on QuixBugs[C]//Proceedings of the 3rd International Workshop on Automated Program Repair, Pittsburgh, May 19, 2022. New York: ACM, 2022: 69-75. [91] DRAIN D, CLEMENT C B, SERRATO G, et al. DeepDebug: fixing python bugs using stack traces, backtranslation, and code skeletons[J]. arXiv:2105.09352, 2021. [92] LUTELLIER T, PHAM H V, PANG L, et al. CoCoNuT: combining context-aware neural translation models using ensemble for program repair[C]//Proceedings of the 29th ACM SIGSOFT International Symposium on Software Testing and Analysis, Jul 18-22, 2020. New York: ACM, 2020: 101-114. [93] JIANG N, LUTELLIER T, TAN L. CURE: code-aware neural machine translation for automatic program repair[C]//Proceedings of the 2021 IEEE/ACM 43rd International Conference on Software Engineering, Madrid, May 22-30, 2021. Piscataway: IEEE, 2021: 1161-1173. |
[1] | HAN Xinxin, BEN Kerong, ZHANG Xian. Research on Named Entity Recognition Technology in Military Software Testing [J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(5): 740-748. |
[2] | ZHANG Yiwei, BEN Kerong. Transition Path Generation Method Based on State Diagram Test [J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(6): 961-972. |
[3] | YU Heng, BEN Kerong. Research on Metamorphic Testing for Model Transformation Program [J]. Journal of Frontiers of Computer Science and Technology, 2016, 10(7): 915-923. |
[4] | HE Yanxiang, CHEN Yong, WU Wei, LI Qing’an, JIANG Nan, XU Chao1. Optimization for Green Compilations: A Survey [J]. Journal of Frontiers of Computer Science and Technology, 2013, 7(8): 673-690. |
[5] | PAN Sen, TAN Xi, PENG Xin, ZHAO Wenyun. Improving Software Defect Prediction by Combining the Information of Class and Package [J]. Journal of Frontiers of Computer Science and Technology, 2012, 6(2): 109-117. |
[6] | HU Congxing, CHEN Lin, DING Hui, ZENG Yi. Fault Localization Method of Combining Statement Execution Complement [J]. Journal of Frontiers of Computer Science and Technology, 2011, 5(6): 522-533. |
[7] | DONG Guowei1,2, XU Baowen1,2+, CHEN Lin1,2, NIE Changhai1,2, WANG Lulu1,2. Survey of Metamorphic Testing [J]. Journal of Frontiers of Computer Science and Technology, 2009, 3(2): 130-143. |
[8] | WANG Ziyuan1,2+, XU Baowen1,2, NIE Changhai1,2. Survey of combinatorial test generation [J]. Journal of Frontiers of Computer Science and Technology, 2008, 2(6): 571-588. |
[9] | XIE Xiaoyuan1, XU Lei1, XU Baowen1,2+,NIE Changhai1, SHI Liang3. Survey of Evolutionary Testing [J]. Journal of Frontiers of Computer Science and Technology, 2008, 2(5): 449-466. |
[10] | ZHANG Xiaofang1,2, CHEN Lin1,2, XU Baowen1,2+, NIE Changhai1,2. Survey of test suite reduction problem [J]. Journal of Frontiers of Computer Science and Technology, 2008, 2(3): 235-247. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/