Journal of Frontiers of Computer Science and Technology ›› 2024, Vol. 18 ›› Issue (3): 574-596.DOI: 10.3778/j.issn.1673-9418.2305019
• Frontiers·Surveys • Previous Articles Next Articles
ZHANG Xishuo, LIU Lin, WANG Hailong, SU Guibin, LIU Jing
Online:
2024-03-01
Published:
2024-03-01
张西硕,柳林,王海龙,苏贵斌,刘静
ZHANG Xishuo, LIU Lin, WANG Hailong, SU Guibin, LIU Jing. Survey of Entity Relationship Extraction Methods in Knowledge Graphs[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(3): 574-596.
张西硕, 柳林, 王海龙, 苏贵斌, 刘静. 知识图谱中实体关系抽取方法研究[J]. 计算机科学与探索, 2024, 18(3): 574-596.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2305019
[1] SINGHAL A. Introducing the knowledge graph: things, not strings[J]. Official Google Blog, 2012, 5(16): 3. [2] JI S, PAN S, CAMBRIA E, et al. A survey on knowledge graphs: representation, acquisition, and applications[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 33(2): 494-514. [3] MATUSZEK C, WITBROCK M, CABRAL J, et al. An introduction to the syntax and content of Cyc[C]//Proceedings of the 2006 AAAI Spring Symposium on Formalizing and Compiling Background Knowledge and Its Applications to Knowledge Representation and Question Answering, Stanford, Mar 27-29, 2006: 44-49. [4] AUER S, BIZER C, KOBILAROV G, et al. DBpedia: a nucleus for a Web of open data[C]//Proceedings of the 6th International Semantic Web Conference, the 2nd Asian Semantic Web Conference, Busan, Nov 11-15, 2007. Berlin, Heidelberg: Springer, 2007: 722-735. [5] DONG X, GABRILOVICH E, HEITZ G, et al. Knowledge vault: a web-scale approach to probabilistic knowledge fusion[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, Aug 24-27, 2014. New York: ACM, 2014: 601-610. [6] MILLER G A. Word Net: a lexical database for English[J]. Communications of the ACM, 1995, 38(11): 39-41. [7] REBELE T, SUCHANEK F, HOFFART J, et al. YAGO: a multilingual knowledge base from Wikipedia, Wordnet, and Geonames[C]//Proceedings of the 2016 International Semantic Web Conference, Kobe, Oct 17-21, 2016. Cham: Springer, 2016: 177-185. [8] BOLLACKER K, EVANS C, PARITOSH P, et al. Freebase: a collaboratively created graph database for structuring human knowledge[C]//Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data. New York: ACM, 2008: 1247-1250. [9] XU B, XU Y, LIANG J, et al. CN-DBpedia: a never-ending Chinese knowledge extraction system[C]//Proceedings of the 2017 International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems. Cham: Springer, 2017: 428-438. [10] 赵晔辉, 柳林, 王海龙, 等. 知识图谱推荐系统研究综述[J].计算机科学与探索, 2023, 17(4): 771-791. ZHAO Y H, LIU L, WANG H L, et al. Survey of knowledge graph recommendation system research[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(4): 771-791. [11] 黄恒琪, 于娟, 廖晓, 等. 知识图谱研究综述[J]. 计算机系统应用, 2019, 28(6): 1-12. HUANG H Q, YU J, LIAO X, et al. Review on knowledge graphs[J]. Computer Systems & Applications, 2019, 28(6): 1-12. [12] WU X, CHEN H, WU G, et al. Knowledge engineering with big data[J]. IEEE Intelligent Systems, 2015, 30(5): 46-55. [13] 郭喜跃, 何婷婷. 信息抽取研究综述[J]. 计算机科学, 2015,42(2): 14-17. GUO X Y, HE T T. Survey about research on information extraction[J]. Computer Science, 2015, 42(2): 14-17. [14] WU X, ZHU X, WU G Q, et al. Data mining with big data[J]. IEEE Transactions on Knowledge and Data Engineering, 2013, 26(1): 97-107. [15] CHINCHOR N. MUC-7 named entity task definition, version 3.5[C]//Proceedings of the 7th Message Understanding Conference, Fairfax, Apr 29-May 1, 1998. Stroudsburg: ACL, 1998. [16] 郭喜跃. 面向开放领域文本的实体关系抽取[D]. 武汉: 华中师范大学, 2016. GUO X Y. Entity relation extraction for open domain texts [D]. Wuhan: Huazhong Normal University, 2016. [17] 赵山, 罗睿, 蔡志平. 中文命名实体识别综述[J]. 计算机科学与探索, 2022, 16(2): 296-304. ZHAO S, LUO R, CAI Z P. Survey of Chinese named entity recognition[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(2): 296-304. [18] 张吉祥, 张祥森, 武长旭, 等. 知识图谱构建技术综述[J]. 计算机工程, 2022, 48(3): 23-37. ZHANG J X, ZHANG X S, WU C X, et al. Survey of knowledge graph construction techniques[J]. Computer Engineering, 2022, 48(3): 23-37. [19] 姜磊, 刘琦, 赵肄江, 等. 面向知识图谱的信息抽取技术综述[J]. 计算机系统应用, 2022, 31(7): 46-54. JIANG L, LIU Q, ZHAO Y J, et al. Review on information extraction techniques for knowledge graph[J]. Computer Systems & Applications, 2022, 31(7): 46-54. [20] 于浏洋, 郭志刚, 陈刚, 等. 面向知识图谱构建的知识抽取技术综述[J]. 信息工程大学学报, 2020, 21(2): 227-235. YU L Y, GUO Z G, CHEN G, et al. Summary of knowledge graph construction oriented knowledge extraction technology[J]. Journal of Information Engineering University, 2020, 21(2): 227-235. [21] 贺昭荣. 面向复杂文本结构的关系抽取研究[D]. 桂林: 桂林电子科技大学, 2021. HE Z R. Research on Chinese relation extraction for complex text structures[D]. Guilin: Guilin University of Electronic Technology, 2021. [22] ZENG D, SUN C, LIN L, et al. LSTM-CRF for drug-named entity recognition[J]. Entropy, 2017, 19(6): 283. [23] FINKEL J R, MANNING C D. Nested named entity recognition[C]//Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing, Singapore, Aug 6-7, 2009. Stroudsburg: ACL, 2009: 141-150. [24] 李雁群, 何云琪, 钱龙华, 等. 中文嵌套命名实体识别语料库的构建[J]. 中文信息学报, 2018, 32(8): 19-26. LI Y Q, HE Y Q, QIAN L H, et al. Chinese nested name entity recognition corpus construction[J]. Journal of Chinese Information Processing, 2018, 32(8): 19-26. [25] WANG B, LU W. Neural segmental hypergraphs for overlapping mention recognition[J]. arXiv:1810.01817, 2018. [26] WANG B, LU W, WANG Y, et al. A neural transition-based model for nested mention recognition[J]. arXiv:1810.01808, 2018. [27] LIN H, LU Y, H X, et al. Sequence-to-nuggets: nested entity mention detection via anchor-region networks[J]. arXiv:1906.03783, 2019. [28] LAMPLE G, BALLESTEROS M, SUBRAMANIAN S, et al. Neural architectures for named entity recognition[J]. arXiv:1603.01360, 2016. [29] QIU X, SUN T, XU Y, et al. Pre-trained models for natural language processing: a survey[J]. Science China Technological Sciences, 2020, 63(10): 1872-1897. [30] LI X, FENG J, MENG Y, et al. A unified MRC framework for named entity recognition[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Jul 5-10, 2020. Stroudsburg: ACL, 2020: 5849-5859. [31] LU Y, LIU Q, DAI D, et al. Unified structure generation for universal information extraction[J]. arXiv:2203.12277, 2022. [32] SONG L, ZHANG Y, WANG Z, et al. N-ary relation extraction using graph state LSTM[J]. arXiv:1808.09101, 2018. [33] 江雅仁, 乐小虬. 一对多实体关系少样本持续学习方法研究[J]. 数据分析与知识发现, 2021, 5(8): 45-53. JIANG Y R, LE X Q. Continual learning for one-to-many entity relationship generation with small samples[J]. Data Analysis and Knowledge Discovery, 2021, 5(8): 45-53. [34] JIA R, WONG C, POON H. Document-level N-ary relation extraction with multiscale representation learning[J]. arXiv:1904.02347, 2019. [35] YAO Y, YE D, LI P, et al. DocRED: a large-scale document-level relation extraction dataset[J]. arXiv:1906.06127, 2019. [36] NAN G, GUO Z, SEKULI? I, et al. Reasoning with latent structure refinement for document-level relation extraction[J]. arXiv:2005.06312, 2020. [37] ZENG S, XU R, CHANG B, et al. Double graph based reasoning for document-level relation extraction[J]. arXiv:2009.13752, 2020. [38] HUANG K, WANG G, MA T, et al. Entity and evidence guided relation extraction for docred[J]. arXiv:2008.12283, 2020. [39] ZHOU W, HUANG K, MA T, et al. Document-level relation extraction with adaptive thresholding and localized context pooling[C]//Proceedings of the 2021 AAAI Conference on Artificial Intelligence, Feb 2-9, 2021. Menlo Park: AAAI, 2021: 14612-14620. [40] WANG F, LI F, FEI H, et al. Entity-centered cross-document relation extraction[J]. arXiv:2210.16541, 2022. [41] YAO Y, DU J, LIN Y, et al. CodRED: a cross-document relation extraction dataset for acquiring knowledge in the wild[C]//Proceedings of the 2021 Conference on Empirical Me-thods in Natural Language Processing, Nov 7-11, 2021. Strou-dsburg: ACL, 2021: 4452-4472. [42] NAYAK T, NG H T. A hierarchical entity graph convolutional network for relation extraction across documents[C]//Proceedings of the 2021 International Conference on Recent Advances in Natural Language Processing, Sep 1-3, 2021:1022-1030. [43] ZHANG Z, ELFARDY H, DREYER M, et al. Enhancing multi-document summarization with cross-document graph-based information extraction[C]//Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics, Dubrovnik, May 2-6, 2023. Stroudsburg: ACL, 2023: 1688-1699. [44] CUI L, YANG D, YU J, et al. Refining sample embeddings with relation prototypes to enhance continual relation extraction[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, Aug 1-6, 2021. Stroudsburg: ACL, 2021: 232-243. [45] LI X, YIN F, SUN Z, et al. Entity-relation extraction as multi-turn question answering[J]. arXiv:1905.05529, 2019. [46] YU D, SUN K, CARDIE C, et al. Dialogue-based relation extraction[J]. arXiv:2004.08056, 2020. [47] ZHAO T, YAN Z, CAO Y, et al. Enhancing dialogue-based relation extraction by speaker and trigger words prediction[C]//Findings of the Association for Computational Linguistics, Aug 1-6, 2021. Stroudsburg: ACL, 2021: 4580-4585. [48] 周滋楷. 面向开放领域文本的实体关系抽取技术研究[D]. 广州: 华南理工大学, 2019. ZHOU Z K. Research on entity relation extraction techniques for open domain texts[D]. Guangzhou: South China University of Technology, 2019. [49] 赵康. 面向开放领域的实体关系抽取方法研究[D]. 石家庄: 河北科技大学, 2023. ZHAO K. Research on entity relation extraction methods for open domain[D]. Shijiazhuang: Hebei University of Science and Technology, 2023. [50] YANG J, WANG H, TANG Y, et al. Incorporating lexicon and character glyph and morphological features into Bi-LSTM-CRF for Chinese medical NER[C]//Proceedings of the 2021 IEEE International Conference on Consumer Electronics and Computer Engineering, Guangzhou, Jan 15-17, 2021. Piscataway: IEEE, 2021: 12-17. [51] CHOI E, LEVY O, CHOI Y, et al. Ultra-fine entity typing[J]. arXiv:1807.04905, 2018. [52] ONOE Y, BORATKO M, MCCALLUM A, et al. Modeling fine-grained entity types with box embeddings[J]. arXiv:2101.00345, 2021. [53] XIN J, LIN Y, LIU Z, et al. Improving neural fine-grained entity typing with knowledge attention[C]//Proceedings of the 2018 AAAI Conference on Artificial Intelligence, New Orleans, Feb 2-7, 2018. Menlo Park: AAAI, 2018: 5997-6004. [54] DAI H, DU D, LI X, et al. Improving fine-grained entity typing with entity linking[J]. arXiv:1909.12079, 2019. [55] REN X, HE W, QU M, et al. Afet: automatic fine-grained entity typing by hierarchical partial-label embedding[C]//Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, Austin, Nov 1-5, 2016. Stroudsburg: ACL, 2016: 1369-1378. [56] ABHISHEK A, ANAND A, AWEKAR A. Fine-grained entity type classification by jointly learning representations and label embeddings[C]//Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics, Valencia, Apr 3-7, 2017. Stroudsburg: ACL, 2017: 797-807. [57] XU P, BARBOSA D. Neural fine-grained entity type classification with hierarchy-aware loss[J]. arXiv:1803.03378, 2018. [58] LIU Q, LIN H, XIAO X, et al. Fine-grained entity typing via label reasoning[J]. arXiv:2109.05744, 2021. [59] YATES A, BANKO M, BROADHEAD M, et al. Textrunner: open information extraction on the web[C]//Proceedings of the 2007 Human Language Technology Conference of the North American Chapter of the Association of Computational Linguistics, Rochester, Apr 23-25, 2007. Stroudsburg: ACL, 2007: 25-26. [60] WU F, WELD D S. Open information extraction using Wikipedia[C]//Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics, Uppsala, Jul 11-16, 2010. Stroudsburg: ACL, 2010: 118-127. [61] FADER A, SODERLAND S, ETZIONI O. Identifying relations for open information extraction[C]//Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing, Edinburgh, Jul 27-31, 2011. Stroudsburg: ACL, 2011: 1535-1545. [62] MAUSAM, SCHMITZ M, SODERLAND S, et al. Open language learning for information extraction[C]//Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, Jeju Island, Jul 12-14, 2012. Stroudsburg: ACL, 2012: 523-534. [63] AKBIK A, L?SER A. Kraken: N-ary facts in open information extraction[C]//Proceedings of the 2012 Joint Workshop on Automatic Knowledge Base Construction and Web-Scale Knowledge Extraction, Montréal, Jun 7-8, 2012. Stroudsburg: ACL, 2012: 52-56. [64] XAVIER C C, DE L V L S. Boosting open information extraction with noun-based relations[C]//Proceedings of the 9th International Conference on Language Resources and Evaluation, Reykjavik, May 26-31, 2014: 96-100. [65] DEL C L, GEMULLA R. Clausie: clause-based open information extraction[C]//Proceedings of the 22nd International Conference on World Wide Web, New York, May 13-17, 2013. New York: ACM, 2013: 355-366. [66] FARUQUI M, KUMAR S. Multilingual open relation extraction using cross-lingual projection[J]. arXiv:1503.06450, 2015. [67] SONG S, SUN Y, DI Q. Multiple order semantic relation extraction[J]. Neural Computing and Applications, 2019, 31: 4563-4576. [68] PETRONI F, DEL C L, GEMULLA R. CORE: context-aware open relation extraction with factorization machines[C]//Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, Lisbon, Sep 17-21, 2015.Stroudsburg: ACL, 2015: 1763-1773. [69] QIU L K, ZHAN G Y. ZERO: a syntax-based system for Chinese open relation extraction[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, Doha, Oct 26-28, 2014. Stroudsburg: ACL, 2014: 1870-1880. [70] 秦兵, 刘安安, 刘挺. 无指导的中文开放式实体关系抽取[J]. 计算机研究与发展, 2015, 52(5): 1029-1035. QIN B, LIU A A, LIU T. Unsupervised Chinese open entity relation extraction[J]. Journal of Computer Research and Development, 2015, 52(5): 1029-1035. [71] GUO X, HE T. Leveraging Chinese encyclopedia for weakly supervised relation extraction[C]//Proceedings of the 5th Joint International Conference on Semantic Technology, Yichang, Nov 11-13, 2015. Cham: Springer, 2016: 127-140. [72] JIA S B, E S J, LI M Z, et al. Chinese open relation extraction and knowledge base establishment[J]. ACM Transactions on Asian and Low-Resource Language Information Processing, 2018, 17(3): 1-22. [73] 李颖, 郝晓燕, 王勇. 中文开放式多元实体关系抽取[J]. 计算机科学, 2017, 44(S1): 80-83. LI Y, HAO X Y, WANG Y. N-ary Chinese open entity-relation extraction[J]. Computer Science, 2017, 44(S1): 80-83. [74] 姚贤明, 甘健侯, 徐坚. 面向中文开放领域的多元实体关系抽取研究[J]. 智能系统学报, 2019, 14(3): 597-604. YAO X M, GAN J H, XU J. Chinese open domain oriented n-ary entity relation extraction[J]. CAAI Transactions on Intelligent Systems, 2019, 14(3): 597-604. [75] 赵山. 基于深度学习的实体关系抽取关键技术研究[D]. 长沙: 国防科技大学, 2021. ZHAO S. Research on key technologies of entity relation extraction based on deep learning[D]. Changsha: National University of Defense Technology, 2021. [76] TEDESCHI S, MAIORCA V, CAMPOLUNGO N, et al. WikiNEuRal: combined neural and knowledge-based silver data creation for multilingual NER[C]//Findings of the Association for Computational Linguistics: the 2021 Conference on Empirical Methods in Natural Language Processing, Punta Cana, Nov 7-9, 2021. Stroudsburg: ACL, 2021: 2521-2533. [77] LIU L, DING B, BING L, et al. MulDA: a multilingual data augmentation framework for low-resource cross-lingual NER[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, Aug 1-6, 2021. Stroudsburg: ACL, 2021: 5834-5846. [78] SHAFFER K. Language clustering for multilingual named entity recognition[C]//Findings of the Association for Computational Linguistics: the 2021 Conference on Empirical Methods in Natural Language Processing, Punta Cana, Nov 7-9, 2021. Stroudsburg: ACL, 2021: 40-45. [79] FAN Y, LIANG Y, MUZIO A, et al. Discovering representation sprachbund for multilingual pre-training[J]. arXiv:2109.00271, 2021. [80] WANG X, JIANG Y, BACH N, et al. Structure-level knowledge distillation for multilingual sequence labeling[J]. arXiv:2004.03846, 2020. [81] LIN Y, LIU Z, SUN M. Neural relation extraction with multi-lingual attention[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, Vancouver, Jul 30-Aug 4, 2017. Stroudsburg: ACL, 2017: 34-43. [82] DUAN X, YIN M, ZHANG M, et al. Zero-shot cross-lingual abstractive sentence summarization through teaching generation and attention[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2019: 3162-3172. [83] 孙凌浩. 基于跨语言迁移学习的实体关系抽取算法研究[D]. 合肥: 中国科学技术大学, 2020. SUN L H. Research on entity relation extraction based on cross-lingual transfer learning[D]. Hefei: University of Science and Technology of China, 2020. [84] 吴婧, 杨百龙, 田罗庚. 基于注意力迁移的跨语言关系抽取方法[J]. 计算机应用研究, 2022, 39(2): 417-423. WU J, YANG B L, TIAN L G. Cross language relationship extraction method based on attention transfer[J]. Application Research of Computers, 2022, 39(2): 417-423. [85] ZHANG D, WEI S, LI S, et al. Multi-modal graph fusion for named entity recognition with targeted visual guidance[C]//Proceedings of the 2021 AAAI Conference on Artificial Intelligence, Feb 2-9, 2021. Menlo Park: AAAI, 2021: 14347-14355. [86] SUI D, TIAN Z, CHEN Y, et al. A large-scale chinese multimodal NER dataset with speech clues[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, Aug 1-6, 2021. Stroudsburg: ACL, 2021: 2807-2818. [87] WU Y, BAMMAN D, RUSSELL S. Adversarial training for relation extraction[C]//Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, Copen-hagen, Sep 9-11, 2017. Stroudsburg: ACL, 2017: 1778-1783. [88] ZHENG C, WU Z, FENG J, et al. MNRE: a challenge multimodal dataset for neural relation extraction with visual evidence in social media posts[C]//Proceedings of the 2021 IEEE International Conference on Multimedia and Expo, Shenzhen, Jul 5-9, 2021. Piscataway: IEEE, 2021: 1-6. [89] WAN H, ZHANG M, DU J, et al. FL-MSRE: a few-shot learning based approach to multimodal social relation extraction[C]//Proceedings of the 2021 AAAI Conference on Artificial Intelligence, Feb 2-9, 2021. Menlo Park: AAAI, 2021: 13916-13923. [90] 楼婧蕾. 基于多模态信息的物体间关系检测研究[D]. 南京: 南京邮电大学, 2022. LOU J L. Research on multimodal information oriented relationship detection[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2022. [91] XU P, BARBOSA D. Neural fine-grained entity type classification with hierarchy-aware loss[J]. arXiv:1803.03378, 2018. [92] SNELL J, SWERSKY K, ZEMEL R. Prototypical networks for few-shot learning[C]//Advances in Neural Information Processing Systems 30, Long Beach, Dec 4-9, 2017: 4077-4087. [93] SUNG F, YANG Y, ZHANG L, et al. Learning to compare: relation network for few-shot learning[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 8-23, 2018. Washington:IEEE Computer Society, 2018: 1199-1208. [94] GENG R, LI B, LI Y, et al. Induction networks for few-shot text classification[J]. arXiv:1902.10482, 2019. [95] GONG J, ELDARDIRY H. Zero-shot learning for relation extraction[J]. arXiv:2011.07126, 2020. [96] GHADDAR A, LANGLAIS P. Winer: a Wikipedia annotated corpus for named entity recognition[C]//Proceedings of the 8th International Joint Conference on Natural Language Processing, Taipei, China, Dec 1, 2017: 413-422. [97] DIXIT M, KWITT R, NIETHAMMER M, et al. AGA: attribute-guided augmentation[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 7455-7463. [98] XIE Q, LUONG M T, HOVY E, et al. Self-training with noisy student improves ImageNet classification[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 10687-10698. [99] KATIYAR A, CARDIE C. Investigating LSTMs for joint extraction of opinion entities and relations[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, Berlin, Aug 1-12, 2016. Stroudsburg: ACL, 2016: 919-929. [100] MIWA M, BANSAL M. End-to-end relation extraction using LSTMs on sequences and tree structures[J]. arXiv:1601.00770, 2016. [101] KATIYAR A, CARDIE C. Going out on a limb:joint extraction of entity mentions and relations without dependency trees[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, Vancouver, Jul 30-Aug 4, 2017. Stroudsburg: ACL, 2017: 917-928. [102] EBERTS M, ULGES A. Span-based joint entity and relation extraction with transformer pre-training[J]. arXiv:1909.07755, 2019. [103] ZHENG S, WANG F, BAO H, et al. Joint extraction of entities and relations based on a novel tagging scheme[J]. arXiv:1706.05075, 2017. [104] BEKOULIS G, DELEU J, DEMEESTER T, et al. Joint entity recognition and relation extraction as a multi-head selection problem[J]. Expert Systems with Applications, 2018, 114: 34-45. [105] FU T J, LI P H, MA W Y. GraphRel: modeling text as relational graphs for joint entity and relation extraction[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Florence, Jul 28-Aug 2, 2019. Stroudsburg: ACL, 2019: 1409-1418. [106] WEI Z, SU J, WANG Y, et al. A novel cascade binary tagging framework for relational triple extraction[J]. arXiv:1909.03227, 2019. [107] LU Y, LIU Q, DAI D, et al. Unified structure generation for universal information extraction[J]. arXiv:2203.12277, 2022. [108] JI B, LI S, GAN S, et al. Few-shot named entity recognition with entity-level prototypical network enhanced by dispersedly distributed prototypes[J]. arXiv:2208.08023, 2022. [109] WANG J, WANG C, TAN C, et al. SpanProto: a two-stage span-based prototypical network for few-shot named entity recognition[J]. arXiv:2210.09049, 2022. [110] WADHWA S, AMIR S, WALLACE B C. Revisiting relation extraction in the era of large language models[J]. arXiv:2305.05003, 2023. [111] WANG S, SUN X, LI X, et al. GPT-NER: named entity recog-nition via large language models[J]. arXiv:2304.10428, 2023. [112] WAN Z, CHENG F, MAO Z, et al. GPT-RE: in-context learning for relation extraction using large language models[J]. arXiv:2305.02105, 2023. |
[1] | CHEN Jiannan, DU Junping, XUE Zhe, KOU Feifei. Accurate Portrait of Big Data of Financial Events Based on Multiple Attention Mechanism [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(7): 1237-1244. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/