[1] 王丽萍, 任宇, 邱启仓, 等. 多目标进化算法性能评价指标研究综述[J]. 计算机学报, 2021, 44(8): 1590-1619.
WANG L P, REN Y, QIU Q C, et al. Survey on performance indicators for multi-objective evolutionary algorithms[J]. Chinese Journal of Computers, 2021, 44(8): 1590-1619.
[2] MOHAPATRA P, NAYAK A, KUMAR S K, et al. Multi-objective process planning and scheduling using controlled elitist non-dominated sorting genetic algorithm[J]. International Journal of Production Research, 2015, 53(6): 1712-1735.
[3] LIU S C, ZHAN Z H, TAN K C, et al. A multiobjective framework for many-objective optimization[J]. IEEE Transactions on Cybernetics, 2022, 52(12): 13654-13668.
[4] 王金杰, 李炜. 混合互信息和粒子群算法的多目标特征选择方法[J]. 计算机科学与探索, 2020, 14(1): 83-95.
WANG J J, LI W. Multi-objective feature selection method based on hybrid MI and PSO algorithm[J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(1): 83-95.
[5] 宋威, 华子彧. 融入社会影响力的粒子群优化算法[J]. 计算机科学与探索, 2020, 14(11): 1908-1919.
SONG W, HUA Z Y. Particle swarm optimization with social influence[J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(11): 1908-1919.
[6] 王晓艳, 曹德欣. 基于进化能力的多策略粒子群优化算法[J]. 计算机工程与应用, 2023, 59(5): 78-86.
WANG X Y, CAO D X. Multi-strategy particle swarm optimization algorithm based on evolution ability[J]. Computer Engineering and Applications, 2023, 59(5): 78-86.
[7] 李湘喆, 顾磊, 马丽, 等. 余弦自适应混沌被囊体种群优化算法[J]. 计算机工程与应用, 2023, 59(2): 65-75.
LI X Z, GU L, MA L, et al. Chaotic tunicate swarm algorithm based on cosine adaptive[J]. Computer Engineering and Applications, 2023, 59(2): 65-75.
[8] 徐泽, 杨伟, 张文强, 等. 基于连锁环网与改进离散粒子群算法的多目标配电网重构[J]. 电力系统保护与控制, 2021, 49(6): 114-123.
XU Z, YANG W, ZHANG W Q, et al. Multi-objective distribution network reconfiguration based on chain loops and improved binary particle swarm optimization[J]. Power System Protection and Control, 2021, 49(6): 114-123.
[9] MARTINEZ S Z, COELLO C A C. A multi-objective particle swarm optimizer based on decomposition[C]//Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, Dublin, Jul 12-16, 2011. New York: ACM, 2011: 69-76.
[10] LIN Q, LI J, DU Z, et al. A novel multi-objective particle swarm optimization with multiple search strategies[J]. European Journal of Operational Research, 2015, 247(3): 732-744.
[11] DAI C, WANG Y, YE M. A new multi-objective particle swarm optimization algorithm based on decomposition[J]. Information Sciences, 2015, 325: 541-557.
[12] HU Y, ZHANG Y, GONG D. Multiobjective particle swarm optimization for feature selection with fuzzy cost[J]. IEEE Transactions on Cybernetics, 2021, 51(2): 874-888.
[13] LI L, CHANG L, GU T, et al. On the norm of dominant difference for many-objective particle swarm optimization[J]. IEEE Transactions on Cybernetics, 2021, 51(4): 2055-2067.
[14] WU B, HU W, HU J, et al. Adaptive multiobjective particle swarm optimization based on evolutionary state estimation[J]. IEEE Transactions on Cybernetics, 2021, 51(7): 3738-3751.
[15] XIANG Y, ZHOU Y, CHEN Z, et al. A many-objective particle swarm optimizer with leaders selected from historical solutions by using scalar projections[J]. IEEE Transactions on Cybernetics, 2020, 50(5): 2209-2222.
[16] WU B, HU W, HE Z, et al. A many-objective particle swarm optimization based on virtual Pareto front[C]//Proceedings of the 2018 IEEE Congress on Evolutionary Computation, Rio de Janeiro, Jul 8-13, 2018. Piscataway: IEEE, 2018: 1-8.
[17] HUANG G B, ZHU Q Y, SIEW C K. Extreme learning machine: theory and applications[J]. Neurocomputing, 2006, 70(1): 489-501.
[18] ZITZLER E, DEB K, THIELE L. Comparison of multi-objective evolutionary algorithms: empirical results[J]. Evolutionary Computation, 2000, 8(2): 173-195.
[19] KENNEDY J, EBERHART R. Particle swarm optimization[C]//Proceedings of the 1995 IEEE International Conference on Neural Networks, Perth, Nov 27-Dec 1, 1995. Piscataway: IEEE, 1995: 1942-1948.
[20] SHI Y, EBERHART R. A modified particle swarm optimizer[C]//Proceedings of the 1998 IEEE International Conference on Evolutionary Computation, Anchorage, May 4-9, 1998. Piscataway: IEEE, 1998: 69-73.
[21] HUANG G B, ZHU Q Y, SIEW C K. Extreme learning machine: a new learning scheme of feedforward neural networks[C]//Proceedings of the 2004 IEEE International Joint Conference on Neural Networks, Budapest, Jul 25-29, 2004. Piscataway: IEEE, 2004: 985-990.
[22] HUANG G B, CHEN L, SIEW C K. Universal approximation using incremental constructive feedforward networks with random hidden nodes[J]. IEEE Transactions on Neural Networks, 2006, 17(4): 879-892.
[23] HUANG G B, ZHOU H, DING X, et al. Extreme learning machine for regression and multiclass classification[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2012, 42(2): 513-529.
[24] WIDROW B, GREENBLATT A, KIM Y, et al. The No-Prop algorithm: a new learning algorithm for multilayer neural networks[J]. Neural Networks, 2013, 37: 182-188.
[25] ZHANG Q, LI H. MOEA/D: a multiobjective evolutionary algorithm based on decomposition[J]. IEEE Transactions on Evolutionary Computation, 2007, 11(6): 712-731.
[26] SHI Y, EBERHART R C. Parameter selection in particle swarm optimization[C]//Proceedings of the 7th International Conference on Evolutionary Programming, San Diego, Mar 25-27, 1998. Berlin, Heidelberg: Springer, 1998: 591-600.
[27] MENG A, LI Z, YIN H, et al. Accelerating particle swarm optimization using crisscross search[J]. Information Sciences, 2016, 329: 52-72.
[28] DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197.
[29] DE FARIAS L, ARAUJO A. A decomposition-based many-objective evolutionary algorithm updating weights when required[J]. Swarm and Evolutionary Computation, 2022, 68: 100980.
[30] TIAN Y, SI L, ZHANG X, et al. Local model-based Pareto front estimation for multiobjective optimization[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2023, 53(1): 623-634.
[31] DEB K, THIELE L, LAUMANNS M, et al. Scalable multi-objective optimization test problems[C]//Proceedings of the 2002 IEEE Congress on Evolutionary Computation, Honolulu, May 12-17, 2002. Piscataway: IEEE, 2002: 825-830.
[32] ZITZLER E, THIELE L, LAUMANNS M, et al. Performance assessment of multiobjective optimizers: an analysis and review[J]. IEEE Transactions on Evolutionary Computation, 2003, 7(2): 117-132.
[33] ZITZLER E, THIELE L. Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach[J]. IEEE Transactions on Evolutionary Computation, 1999, 3(4): 257-271.
[34] LIN Q, LIU S, ZHU Q, et al. Particle swarm optimization with a balanceable fitness estimation for many-objective optimization problems[J]. IEEE Transactions on Evolutionary Computation, 2018, 22(1): 32-46.
[35] SUN L, LI K. Adaptive operator selection based on dynamic Thompson sampling for MOEA/D[C]//Proceedings of the 16th International Conference on Parallel Problem Solving from Nature, Leiden, Sep 5-9, 2020. Cham: Springer, 2020: 271-284.
[36] LIU Y, ISHIBUCHI H, MASUYAMA N, et al. Adapting reference vectors and scalarizing functions by growing neural gas to handle irregular Pareto fronts[J]. IEEE Transactions on Evolutionary Computation, 2020, 24(3): 439-453.
[37] TIAN Y, ZHU W, ZHANG X, et al. A practical tutorial on solving optimization problems via PlatEMO[J]. Neuro-computing, 2023, 518: 190-205. |