[1] 龚勤林. 产业链延伸的价格提升研究[J]. 价格理论与实践, 2004(3): 33-34.
GONG Q L. Research on price increase through industrial chain extension[J]. Price: Theory & Practice, 2004(3): 33-34.
[2] 严珂, 王红姝. 基于产业链视角的速冻食品产业发展研究: 以河南速冻食品行业为例[J]. 经济师, 2015(2): 57-59.
YAN K, WANG H S. Research on the development of the frozen food industry from the industrial chain perspective: a case study of the frozen food industry in Henan[J]. China Economist, 2015(2): 57-59.
[3] 周月书, 王婕. 产业链组织形式、市场势力与农业产业链融资: 基于江苏省397户规模农户的实证分析[J]. 中国农村经济, 2017(4): 46-58.
ZHOU Y S, WANG J. Industry chain organization mode, market power and agricultural industry chain financing: an empirical analysis based on data collected from 397 large-scale farmers in Jiangsu Province[J]. Chinese Rural Economy, 2017(4): 46-58.
[4] CHEN X J, JIA S B, XIANG Y. A review: knowledge reasoning over knowledge graph[J]. Expert Systems with Applications, 2020, 141: 112948.
[5] HUBAUER T, LAMPARTER S, HAASE P, et al. Use cases of the industrial knowledge graph at Siemens[C]//Proceedings of the 2018 International Semantic Web Conference, 2018: 107-108.
[6] YAO Y F, DUAN J H, XU K D, et al. A survey on large langu-age model (LLM) security and privacy: the good, the bad, and the ugly[J]. High-Confidence Computing, 2024, 4(2): 100211.
[7] HE W, NIU Y, DAI S, et al. Study on the system method of DCS remote operation and maintenance system of nuclear power plant based on parallel theory[EB/OL]. [2025-03-10]. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4679098.
[8] 李逸飞, 张玲玲, 董宇轩, 等. 基于大语言模型增强表征对齐的小样本持续关系抽取方法[J]. 计算机科学与探索, 2024, 18(9): 2326-2336.
LI Y F, ZHANG L L, DONG Y X, et al. Large language model augmentation and feature alignment method for few-shot continual relation extraction[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(9): 2326-2336.
[9] HOGAN A, BLOMQVIST E, COCHEZ M, et al. Knowledge graphs[J]. ACM Computing Surveys, 2022, 54(4): 1-37.
[10] NGUYEN H L, VU D T, JUNG J J. Knowledge graph fusion for smart systems: a survey[J]. Information Fusion, 2020, 61: 56-70.
[11] LIN J J, ZHAO Y Z, HUANG W Y, et al. Domain knowledge graph-based research progress of knowledge representation[J]. Neural Computing and Applications, 2021, 33(2): 681-690.
[12] EHRMANN M, HAMDI A, PONTES E L, et al. Named entity recognition and classification in historical documents: a survey[J]. ACM Computing Surveys, 2024, 56(2): 1-47.
[13] 文森, 钱力, 胡懋地, 等. 基于大语言模型的问答技术研究进展综述[J]. 数据分析与知识发现, 2024, 8(6): 16-29.
WEN S, QIAN L, HU M D, et al. Review of research progress on question-answering techniques based on large language models[J]. Data Analysis and Knowledge Discovery, 2024, 8(6): 16-29.
[14] WU T Y, HE S Z, LIU J P, et al. A brief overview of ChatGPT: the history, status quo and potential future development[J]. IEEE/CAA Journal of Automatica Sinica, 2023, 10(5): 1122-1136.
[15] SHEN Y, SONG K, TAN X, et al. HuggingGPT: solving AI tasks with ChatGPT and its friends in hugging face[EB/OL]. [2025-03-10]. https://arxiv.org/abs/2303.17580.
[16] 裴炳森, 李欣, 吴越. 基于ChatGPT的电信诈骗案件类型影响力评估[J]. 计算机科学与探索, 2023, 17(10): 2413-2425.
PEI B S, LI X, WU Y. Influence evaluation of telecom fraud case types based on ChatGPT[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(10): 2413-2425.
[17] 冯钧, 畅阳红, 陆佳民, 等. 基于大语言模型的水工程调度知识图谱的构建与应用[J]. 计算机科学与探索, 2024, 18(6): 1637-1647.
FENG J, CHANG Y H, LU J M, et al. Construction and application of knowledge graph for water engineering scheduling based on large language model[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(6): 1637-1647.
[18] WANG S H, SUN X F, LI X Y, et al. GPT-NER: named entity recognition via large language models[EB/OL]. [2025-03-10]. https://arxiv.org/abs/2304.10428.
[19] WEBSON A, PAVLICK E. Do prompt-based models really understand the meaning of their prompts?[EB/OL]. [2025-03-10]. https://arxiv.org/abs/2109.01247.
[20] JIANG X J, ZHOU W, HOU J. Construction of fault diagnosis system for control rod drive mechanism based on knowledge graph and Bayesian inference[J]. Nuclear Science and Techniques, 2023, 34(2): 21.
[21] FAN C H, WEI W, QU X Y, et al. Enhancing low-resource relation representations through multi-view decoupling[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2024, 38(16): 17968-17976.
[22] YUAN J S, LI H Q. Research on the standardization model of data semantics in the knowledge graph construction of Oil&Gas industry[J]. Computer Standards & Interfaces, 2023, 84: 103705.
[23] 魏明珠, 郑荣, 高志豪, 等. 融合知识图谱和深度神经网络的产业新兴技术预测模型研究[J]. 情报学报, 2022, 41(11): 1134-1148.
WEI M Z, ZHENG R, GAO Z H, et al. Research on industry emerging technology forecast modeling based on knowledge graph and deep neural networks[J]. Journal of the China Society for Scientific and Technical Information, 2022, 41(11): 1134-1148.
[24] 刘家玮, 刘波, 沈岳. 知识图谱在农业信息服务中的应用进展[J]. 软件, 2015, 36(3): 26-30.
LIU J W, LIU B, SHEN Y. The application of the knowledge mapping based on agricultural information services[J]. Computer Engineering & Software, 2015, 36(3): 26-30.
[25] 范存庆, 余军合, 战洪飞, 等. 产业集群知识图谱构建方法研究[J]. 科技与经济, 2022, 35(3): 56-60.
FAN C Q, YU J H, ZHAN H F, et al. Research on the construction method of industrial cluster knowledge graph[J]. Science & Technology and Economy, 2022, 35(3): 56-60.
[26] ZHANG W Y, LIU Y G, JIANG L H, et al. The construction of a domain knowledge graph and its application in supply chain risk analysis[C]//Advances in E-Business Engineering for Ubiquitous Computing. Cham: Springer, 2020: 464-478.
[27] WEI X, CUI X Y, CHENG N, et al. ChatIE: zero-shot information extraction via chatting with ChatGPT[EB/OL]. [2025-03-11]. https://arxiv.org/abs/2302.10205.
[28] YANG A, YANG B, ZHANG B, et al. Qwen2.5 technical report[EB/OL]. [2025-03-11]. https://arxiv.org/abs/2412.15115.
[29] GUO D, YANG D, ZHANG H, et al. DeepSeek-R1: incentivizing reasoning capability in LLMs via reinforcement learning[EB/OL]. [2025-03-11]. https://arxiv.org/abs/2501.12948.
[30] WEI Z P, SU J L, WANG Y, et al. A novel cascade binary tagging framework for relational triple extraction[EB/OL]. [2025-03-11]. https://arxiv.org/abs/1909.03227.
[31] LU Y, LIU Q, DAI D, et al. Unified structure generation for universal information extraction[EB/OL]. [2025-03-11]. https://arxiv.org/abs/2203.12277. |