[1] HOLLAND J H. Genetic algorithms[J]. Scientific American, 1992, 267(1): 66-72.
[2] MIRJALILI S, MIRJALILI S M, LEWIS A. Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69: 46-61.
[3] ARORA S, SINGH S. Butterfly optimization algorithm: a novel approach for global optimization[J]. Soft Computing, 2019, 23(3): 715-734.
[4] MIRJALILI S, LEWIS A. The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95: 51-67.
[5] MIRJALILI S, GANDOMI A H, MIRJALILI S Z, et al. Salp swarm algorithm: a bio-inspired optimizer for engineering design problems[J]. Advances in Engineering Software, 2017, 114: 163-191.
[6] POLI R, KENNEDY J, BLACKWELL T. Particle swarm optimization[J]. Swarm Intelligence, 2007, 1(1): 33-57.
[7] ABUALIGAH L, DIABAT A, MIRJALILI S, et al. The arithmetic optimization algorithm[J]. Computer Methods in Applied Mechanics and Engineering, 2021, 376: 113609.
[8] 贾鹤鸣, 刘宇翔, 刘庆鑫, 等. 融合随机反向学习的黏菌与算术混合优化算法[J]. 计算机科学与探索, 2022, 16(5): 1182-1192.
JIA H M, LIU Y X, LIU Q X, et al. Hybrid algorithm of slime mould algorithm and arithmetic optimization algorithm based on random opposition-based learning[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(5): 1182-1192.
[9] 贾鹤鸣, 姜子超, 李瑶. 基于改进秃鹰搜索算法的同步优化特征选择[J]. 控制与决策, 2022, 37(2): 445-454.
JIA H M, JIANG Z C, LI Y. Simultaneous feature selection optimization based on improved bald eagle search algorithm[J]. Control and Decision, 2022, 37(2): 445-454.
[10] SHI Y H. An optimization algorithm based on brainstorming process[M]//Emerging research on swarm intelligence and algorithm optimization. New York: IGI Global, 2015: 1-35.
[11] 马威强, 高永琪, 赵苗. 基于全局最优和差分变异的头脑风暴优化算法[J]. 系统工程与电子技术, 2022, 44(1): 270-278.
MA W Q, GAO Y Q, ZHAO M. Global-best difference- mutation brain storm optimization algorithm[J]. Systems Engineering and Electronics, 2022, 44(1): 270-278.
[12] 衣俊艳, 施晓东, 杨刚. 多分支混沌变异的头脑风暴优化算法[J]. 计算机工程与应用, 2022, 58(16): 129-138.
YI J Y, SHI X D, YANG G. Brain storm optimization based on multi-branch chaotic mutation[J]. Computer Engineering and Applications, 2022, 58(16): 129-138.
[13] 杨玉婷, 史玉回, 夏顺仁. 基于讨论机制的头脑风暴优化算法[J]. 浙江大学学报(工学版), 2013, 47(10): 1705-1711.
YANG Y T, SHI Y H, XIA S R. Discussion mechanism based brain storm optimization algorithm[J]. Journal of Zhejiang University (Engineering Science), 2013, 47(10): 1705-1711.
[14] 魏诗雨, 刘勇. 机器人路径规划的新型头脑风暴优化算法[J]. 计算机应用研究, 2022, 39(2): 402-406.
WEI S Y, LIU Y. Robot path planning with novel brain storm optimization algorithm[J]. Application Research of Computers, 2022, 39(2): 402-406.
[15] XUE Y, ZHANG Q, ZHAO Y. An improved brain storm optimization algorithm with new solution generation strategies for classification[J]. Engineering Applications of Artificial Intelligence, 2022, 110: 104677.
[16] LIU J N, PENG H, WU Z J, et al. Multi-strategy brain storm optimization algorithm with dynamic parameters adjustment[J]. Applied Intelligence, 2020, 50(4): 1289-1315.
[17] WU D, RAO H H, WEN C S, et al. Modified sand cat swarm optimization algorithm for solving constrained engineering optimization problems[J]. Mathematics, 2022, 10(22): 4350.
[18] OSZUST M. Enhanced marine predators algorithm with local escaping operator for global optimization[J]. Knowledge-Based Systems, 2021, 232: 107467.
[19] JIA H M, PENG X X, LANG C B. Remora optimization algorithm[J]. Expert Systems with Applications, 2021, 185: 115665.
[20] ABUALIGAH L, YOUSRI D, ABD ELAZIZ M, et al. Aquila optimizer: a novel meta-heuristic optimization algorithm[J]. Computers & Industrial Engineering, 2021, 157: 107250.
[21] MIARNAEIMI F, AZIZYAN G, RASHKI M. Horse herd optimization algorithm: a nature-inspired algorithm for high-dimensional optimization problems[J]. Knowledge-Based Systems, 2021, 213: 106711.
[22] JIA H M, RAO H H, WEN C S, et al. Crayfish optimization algorithm[J]. Artificial Intelligence Review, 2023, 56(2): 1919-1979.
[23] OPARA K R, ARABAS J. Differential evolution: a survey of theoretical analyses[J]. Swarm and Evolutionary Computation, 2019, 44: 546-558.
[24] KAHRAMAN H T, KAT? M, ARAS S, et al. Development of the Natural survivor method (NSM) for designing an updating mechanism in metaheuristic search algorithms[J]. Engineering Applications of Artificial Intelligence, 2023, 122: 106121. |