[1] Market Data. Top apps and games[EB/OL]. [2024-05-10]. https://www.data.ai/cn/insights/market-data/q1-2023-top-apps-and-games/.
[2] ZHENG W, LIN L D, CHEN X, et al. ISTA: automatic test case generation and optimization for intelligent systems based on coverage analysis[C]//Proceedings of the 2023 IEEE International Conference on Software Analysis, Evolution and Reengineering. Piscataway: IEEE, 2023: 758-762.
[3] WANG W Y, LI D F, YANG W, et al. An empirical study of Android test generation tools in industrial cases[C]//Proceedings of the 33rd ACM/IEEE International Conference on Automated Software Engineering. New York: ACM, 2018: 738-748.
[4] 丁蕊, 董红斌, 张岩, 等. 基于关键点路径的快速测试用例自动生成方法[J]. 软件学报, 2016, 27(4): 814-827.
DING R, DONG H B, ZHANG Y, et al. Fast automatic generation method for software testing data based on key-point path[J]. Journal of Software, 2016, 27(4): 814-827.
[5] CHOUDHARY S R, GORLA A, ORSO A. Automated test input generation for Android: are we there yet?(E)[C]//Proceedings of the 2015 30th IEEE/ACM International Conference on Automated Software Engineering. Piscataway: IEEE, 2015: 429-440.
[6] 张文, 陈锦富, 蔡赛华, 等. 一种聚类分析驱动种子调度的模糊测试方法[J]. 软件学报, 2024, 35(7): 3141-3161.
ZHANG W, CHEN J F, CAI S H, et al. Fuzzing approach of clustering analysis-driven in seed scheduling[J]. Journal of Software, 2024, 35(7): 3141-3161.
[7] 钱忠胜, 宋涛. 面向关键字流图的相似程序间测试用例的重用[J]. 软件学报, 2021, 32(9): 2691-2712.
QIAN Z S, SONG T. Reuse of test cases between similar programs based on keyword flow graph[J]. Journal of Software, 2021, 32(9): 2691-2712.
[8] FENG S D, CHEN C Y. GIFdroid: automated replay of visual bug reports for Android apps[C]//Proceedings of the 2022 IEEE/ACM 44th International Conference on Software Engineering. Piscataway: IEEE, 2022: 1045-1057.
[9] ZHAO Y, YU T T, SU T, et al. ReCDroid: automatically reproducing Android application crashes from bug reports[C]//Proceedings of the 2019 IEEE/ACM 41st International Conference on Software Engineering. Piscataway: IEEE, 2019: 128-139.
[10] 曹羽中, 吴国全, 陈伟, 等. 一种基于录制/重放的Android应用众包测试方法[J]. 软件学报, 2020, 31(8): 2508-2529.
CAO Y Z, WU G Q, CHEN W, et al. Crowdsourcing test method for Android applications based on recording/replay[J]. Journal of Software, 2020, 31(8): 2508-2529.
[11] SASNAUSKAS R, REGEHR J. Intent fuzzer: crafting intents of death[C]//Proceedings of the 2014 Joint International Workshop on Dynamic Analysis and Software and System Performance Testing, Debugging, and Analytics. New York: ACM, 2014: 1-5.
[12] HAY R, TRIPP O, PISTOIA M. Dynamic detection of inter-application communication vulnerabilities in Android[C]//Proceedings of the 2015 International Symposium on Software Testing and Analysis. New York: ACM, 2015: 118-128.
[13] RASTHOFER S, ARZT S, TRILLER S, et al. Making Malory behave maliciously: targeted fuzzing of Android execution environments[C]//Proceedings of the 2017 IEEE/ACM 39th International Conference on Software Engineering. Piscataway: IEEE, 2017: 300-311.
[14] YAN J W, LIU H, PAN L J, et al. Multiple-entry testing of Android applications by constructing activity launching contexts[C]//Proceedings of the 2020 IEEE/ACM 42nd International Conference on Software Engineering. Piscataway: IEEE, 2020: 457-468.
[15] LIU A, GUO C K, DONG N P, et al. DALT: deep activity launching test via intent-constraint extraction[C]//Proceedings of the 2022 IEEE 33rd International Symposium on Software Reliability Engineering. Piscataway: IEEE, 2022: 482-493.
[16] FU J. The access address for CoMuBot[EB/OL]. [2024-05-10]. https://github.com/InterestingApple/CoMuBot.
[17] LIU J R, WU T Y, DENG X, et al. InsDal: a safe and extensible instrumentation tool on Dalvik byte-code for Android applications[C]//Proceedings of the 2017 IEEE 24th International Conference on Software Analysis, Evolution and Reengineering. Piscataway: IEEE, 2017: 502-506.
[18] GU T X, SUN C N, MA X X, et al. Practical GUI testing of Android applications via model abstraction and refinement[C]//Proceedings of the 2019 IEEE/ACM 41st International Conference on Software Engineering. Piscataway: IEEE, 2019: 269-280.
[19] NIELSON F, NIELSON H R, HANKIN C. Principles of program analysis[M]. Berlin, Heidelberg: Springer, 1999.
[20] MOURA L D, BJ?RNER N. Z3: an efficient smt solver[C]//Proceedings of the 14th International Conference on Tools and Algorithms for the Construction and Analysis of Systems. Berlin, Heidelberg: Springer, 2008: 337-340.
[21] LIU C L. ProMal: precise window transition graphs for Android via synergy of program analysis and machine learning[C]//Proceedings of the 2021 IEEE/ACM 43rd International Conference on Software Engineering. Piscataway: IEEE, 2021: 144-146.
[22] CHEN S, FAN L L, CHEN C Y, et al. Automatically distilling storyboard with rich features for Android apps[J]. IEEE Transactions on Software Engineering, 2023, 49(2): 667-683.
[23] YANG S Q, WU H W, ZHANG H L, et al. Static window transition graphs for android[J].?Automated Software Engineering,?2018, 25: 833-873.
[24] The access address for APKTool[EB/OL]. [2024-05-12]. https:// github.com/iBotPeaches/Apktool.
[25] SOOT-OSS. The access address for Soot[EB/OL]. [2024-05-12]. https://github.com/soot-oss/soot.
[26] The access address for Jadx[EB/OL]. [2024-05-12]. https://github.com/skylot/jadx.
[27] Android Developers. Ui/application exerciser monkey[EB/OL]. [2024-05-12]. https://developer.android.com/studio/test/other-testing-tools/monkey.
[28] YAZDANIBANAFSHEDARAGH F, MALEK S. Deep GUI: black-box GUI input generation with deep learning[C]//Proceedings of the 2021 36th IEEE/ACM International Conference on Automated Software Engineering. Piscataway: IEEE, 2021: 905-916.
[29] WANG J, JIANG Y Y, XU C, et al. ComboDroid: generating high-quality test inputs for Android apps via use case combinations[C]//Proceedings of the 2020 IEEE/ACM 42nd International Conference on Software Engineering. Piscataway: IEEE, 2020: 469-480.
[30] SU T, MENG G Z, CHEN Y T, et al. Guided, stochastic model-based GUI testing of Android apps[C]//Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering. New York: ACM, 2017: 245-256.
[31] KURIAN E, BRIOLA D, BRAIONE P, et al. Automatically generating test cases for safety-critical software via symbolic execution[J]. Journal of Systems and Software, 2023, 199: 111629.
[32] AGGARWAL A, LOHIA P, NAGAR S, et al. Black box fairness testing of machine learning models[C]//Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering. New York: ACM, 2019: 625-635.
[33] MAO K, HARMAN M, JIA Y. Sapienz: multi-objective automated testing for Android applications[C]//Proceedings of the 25th International Symposium on Software Testing and Analysis. New York: ACM, 2016: 94-105.
[34] LV Z W, PENG C, ZHANG Z, et al. Fastbot2: reusable automated model-based GUI testing for Android enhanced by reinforcement learning[C]//Proceedings of the 37th IEEE/ACM International Conference on Automated Software Engineering. New York: ACM, 2022: 1-5.
[35] ROMDHANA A, MERLO A, CECCATO M, et al. Deep reinforcement learning for black-box testing of Android apps[J]. ACM Transactions on Software Engineering and Methodology, 2022, 31(4): 1-29.
[36] PAN M X, HUANG A, WANG G X, et al. Reinforcement learning based curiosity-driven testing of Android applications[C]//Proceedings of the 29th ACM SIGSOFT International Symposium on Software Testing and Analysis. New York: ACM, 2020: 153-164.
[37] 张少坤, 李元春, 雷瀚文, 等. 基于多模态表征的移动应用GUI模糊测试框架[J]. 软件学报, 2024, 35(7): 3162-3179.
ZHANG S K, LI Y C, LEI H W, et al. GUI fuzzing framework for mobile apps based on multi-modal representation[J]. Journal of Software, 2024, 35(7): 3162-3179.
[38] BURNS J. Null intent fuzzer[EB/OL]. [2024-05-12]. https://www.isecpartners.com/tools/mobile-security/intent-fuzzer.aspx.
[39] ARZT S, RASTHOFER S, FRITZ C, et al. FlowDroid: precise context, flow, field, object-sensitive and lifecycle-aware taint analysis for Android apps[C]//Proceedings of the 35th ACM SIGPLAN Conference on Programming Language Design and Implementation. New York: ACM, 2014: 259-269.
[40] CAO S C, HE B, SUN X B, et al. ODDFuzz: discovering Java deserialization vulnerabilities via structure-aware directed greybox fuzzing[C]//Proceedings of the 2023 IEEE Symposium on Security and Privacy. Piscataway: IEEE, 2023: 2726-2743.
[41] DU Z J, LI Y K, LIU Y, et al. Windranger: a directed greybox fuzzer driven by deviation basic blocks[C]//Proceedings of the 2022 IEEE/ACM 44th International Conference on Software Engineering. Piscataway: IEEE, 2022: 2440-2451.
[42] LEE G, SHIM W, LEE B. Constraint-guided directed greybox fuzzing[C]//Proceedings of the 30th USENIX Security Symposium. Berkeley: USENIX Association, 2021: 3559-3576.
[43] WANG Y H, JIA X K, LIU Y W, et al. Not all coverage measurements are equal: fuzzing by coverage accounting for input prioritization[C]//Proceedings of the 2020 Network and Distributed System Security Symposium, 2020.
[44] WANG J H, SONG C Y, YIN H. Reinforcement learning-based hierarchical seed scheduling for greybox fuzzing[C]//Proceedings of the 2021 Network and Distributed System Security Symposium, 2021.
[45] YUE T, WANG P F, TANG Y, et al. Ecofuzz: adaptive energy-saving greybox fuzzing as a variant of the adversarial multi-armed bandit[C]//Proceedings of the 29th USENIX Security Symposium. Berkeley: USENIX Association, 2020: 2307-2324.
[46] LYU C, JI S L, ZHANG X H, et al. EMS: history-driven mutation for coverage-based fuzzing[C]//Proceedings of the 29th Annual Network and Distributed System Security Symposium, 2022. |