[1] MIRJALILI S, LEWIS A. The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95: 51-67.
[2] CHOPRA N, MOHSIN ANSARI M. Golden jackal optimization: a novel nature-inspired optimizer for engineering applications[J]. Expert Systems with Applications, 2022, 198: 116924.
[3] XUE J K, SHEN B. Dung beetle optimizer: a new meta-heuristic algorithm for global optimization[J]. The Journal of Supercomputing, 2023, 79(7): 7305-7336.
[4] ABDEL-BASSET M, MOHAMED R, ABOUHAWWASH M. Crested porcupine optimizer: a new nature-inspired metaheuristic[J]. Knowledge-Based Systems, 2024, 284: 111257.
[5] WANG J, WANG W C, HU X X, et al. Black-winged kite algorithm: a nature-inspired meta-heuristic for solving benchmark functions and engineering problems[J]. Artificial Intelligence Review, 2024, 57(4): 98.
[6] 陈丽芳, 曹柯欣, 张思鹏, 等. 群智能优化算法最新进展[J]. 计算机工程与应用, 2024, 60(19): 46-67.
CHEN L F, CAO K X, ZHANG S P, et al. Recent progress of swarm intelligent optimization algorithms[J]. Computer Engineering and Applications, 2024, 60(19): 46-67.
[7] 戴春雨, 马廉洁, 蒋涵存, 等. 基于多种策略改进的鲸鱼优化算法[J]. 计算机工程与科学, 2024, 46(9): 1635-1647.
DAI C Y, MA L J, JIANG H C, et al. An improved whale optimization algorithm based on multiple strategies[J]. Computer Engineering & Science, 2024, 46(9): 1635-1647.
[8] 程彦琳, 李书琴. 基于混沌映射和莱维飞行扰动的蛇形优化算法[J]. 计算机工程与设计, 2024, 45(9): 2658-2668.
CHENG Y L, LI S Q. Snake optimization algorithm based on chaotic reverse and Levy flight[J]. Computer Engineering and Design, 2024, 45(9): 2658-2668.
[9] DENG H J, LIU L N, FANG J Y, et al. A novel improved whale optimization algorithm for optimization problems with multi-strategy and hybrid algorithm[J]. Mathematics and Computers in Simulation, 2023, 205: 794-817.
[10] 李江华, 王鹏晖, 李伟. 一种混合多策略改进的麻雀搜索算法[J]. 计算机工程与科学, 2024, 46(2): 303-315.
LI J H, WANG P H, LI W. A hybrid multi-strategy improved sparrow search algorithm[J]. Computer Engineering & Science, 2024, 46(2): 303-315.
[11] 贾鹤鸣, 文昌盛, 吴迪, 等. 融合联合反向学习与宿主切换机制的?鱼优化算法[J]. 计算机科学与探索, 2023, 17(12): 2896-2912.
JIA H M, WEN C S, WU D, et al. Remora optimization algorithm combining joint opposite selection and host switching[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(12): 2896-2912.
[12] 郭琴, 郑巧仙. 多策略改进的蜣螂优化算法及其应用[J]. 计算机科学与探索, 2024, 18(4): 930-946.
GUO Q, ZHENG Q X. Multi-strategy improved dung beetle optimizer and its application[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(4): 930-946.
[13] 苏晨, 王防修, 黄淄博. 融合正切搜索与竞争交配的斑马优化算法及应用[J]. 计算机科学与探索, 2025, 19(4): 945-963.
SU C, WANG F X, HUANG Z B. Integration of tangent search and competitive mating in zebra optimization algorithm and its application[J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(4): 945-963.
[14] 王兴旺, 张清杨, 姜守勇, 等. 基于改进鲸鱼优化算法的动态无人机路径规划[J]. 计算机应用, 2025, 45(3): 928-936.
WANG X W, ZHANG Q Y, JIANG S Y, et al. Dynamic UAV path planning based on modified whale optimization algorithm[J]. Journal of Computer Applications, 2025, 45(3): 928-936.
[15] 陈峰, 丁泉, 吴乐, 等. 混合驱动的粒子群算法[J]. 计算机工程与应用, 2024, 60(8): 78-89.
CHEN F, DING Q, WU L, et al. Hybrid driven particle swarm algorithm[J]. Computer Engineering and Applications, 2024, 60(8): 78-89.
[16] 力尚龙, 刘建华, 贾鹤鸣. 融合多狩猎协调策略的爬行动物搜索算法[J]. 计算机应用, 2024, 44(9): 2818-2828.
LI S L, LIU J H, JIA H M. Reptile search algorithm based on multi-hunting coordination strategy[J]. Journal of Computer Applications, 2024, 44(9): 2818-2828.
[17] WANG X L, ZHAN L Y, ZHANG Y, et al. Environmental cold chain distribution center location model in the semiconductor supply chain: a hybrid arithmetic whale optimization algorithm[J]. Computers & Industrial Engineering, 2024, 187: 109773.
[18] TIZHOOSH H R. Opposition-based learning: a new scheme for machine intelligence[C]//Proceedings of the 2005 International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce. Piscataway: IEEE, 2005: 695-701.
[19] 严爱军, 胡开成. 提高海鸥优化算法寻优能力的改进策略及其应用[J]. 信息与控制, 2022, 51(6): 688-698.
YAN A J, HU K C. Improved strategy and its application to the optimization of seagull optimization algorithm[J]. Information and Control, 2022, 51(6): 688-698.
[20] 王玉芳, 程培浩. 融合多策略改进的鲸鱼优化算法[J]. 计算机工程与应用, 2025, 61(8): 83-99.
WANG Y F, CHENG P H. Whale optimization algorithm with improved multi-strategy integration[J]. Computer Engineering and Applications, 2025, 61(8): 83-99.
[21] 张莉, 张小庆, 孙民民, 等. 蝴蝶搜索与动态反向学习柯西变异的白鲸优化算法[J]. 计算机工程与应用, 2025, 61(10): 96-110.
ZHANG L, ZHANG X Q, SUN M M, et al. Beluga whale optimization algorithm based on butterfly search and dynamic inverse learning Cauchy variation[J]. Computer Engineering and Applications, 2025, 61(10): 96-110.
[22] YAO L G, YANG J, YUAN P L, et al. Multi-strategy improved sand cat swarm optimization: global optimization and feature selection[J]. Biomimetics, 2023, 8(6): 492.
[23] 郑新宇, 李媛, 刘晓琳. 改进北方苍鹰优化算法的收敛性及其性能对比分析[J]. 计算机科学与探索, 2024, 18(12): 3203-3218.
ZHENG X Y, LI Y, LIU X L. Comparative analysis of convergence and performance of improved northern goshawk optimization algorithm[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(12): 3203-3218.
[24] 张文修, 梁怡. 遗传算法的数学基础[M]. 西安: 西安交通大学出版社, 2000.
ZHANG W X, LIANG Y. Mathematical foundation of genetic algorithms[M]. Xi??an: Xi??an Jiaotong University Press, 2000.
[25] KENNEDY J, EBERHART R. Particle swarm optimization[C]//Proceedings of the 1995 International Conference on Neural Networks. Piscataway: IEEE, 1995: 1942-1948.
[26] SHAMI T M, MIRJALILI S, AL-ERYANI Y, et al. Velocity pausing particle swarm optimization: a novel variant for global optimization[J]. Neural Computing and Applications, 2023, 35(12): 9193-9223.
[27] STORN R, PRICE K. Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of Global Optimization, 1997, 11(4): 341-359.
[28] ABBASI B, MAJIDNEZHAD V, MIRJALILI S. ADE: advanced differential evolution[J]. Neural Computing and Applications, 2024, 36(25): 15407-15438.
[29] MIRJALILI S. SCA: a sine cosine algorithm for solving optimization problems[J]. Knowledge-Based Systems, 2016, 96: 120-133.
[30] ZHONG C T, LI G, MENG Z. Beluga whale optimization: a novel nature-inspired metaheuristic algorithm[J]. Knowledge-Based Systems, 2022, 251: 109215.
[31] DERRAC J, GARCíA S, MOLINA D, et al. A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms[J]. Swarm and Evolutionary Computation, 2011, 1(1): 3-18.
[32] CHEN P, ZHOU S H, ZHANG Q, et al. A meta-inspired termite queen algorithm for global optimization and engineering design problems[J]. Engineering Applications of Artificial Intelligence, 2022, 111: 104805.
[33] 李大海, 李鑫, 王振东. 融合小生境机制的增强麻雀搜索算法及其应用[J]. 计算机应用研究, 2024, 41(4): 1077-1085.
LI D H, LI X, WANG Z D. Enhanced sparrow search algorithm by integrating niche mechanism and its application[J]. Application Research of Computers, 2024, 41(4): 1077-1085. |