[1] 高恺, 何昊, 谢冰, 等. 开源软件供应链研究综述[J]. 软件学报, 2024, 35(2): 581-603.
GAO K, HE H, XIE B, et al. Survey on open source software supply chains[J]. Journal of Software, 2024, 35(2): 581-603.
[2] MIRANDA A, PIMENTEL J. On the use of package managers by the C++ open-source community[C]//Proceedings of the 33rd Annual ACM Symposium on Applied Computing. New York: ACM, 2018: 1483-1491.
[3] 纪守领, 王琴应, 陈安莹, 等. 开源软件供应链安全研究综述[J]. 软件学报, 2023, 34(3): 1330-1364.
JI S L, WANG Q Y, CHEN A Y, et al. Survey on open-source software supply chain security[J]. Journal of Software, 2023, 34(3): 1330-1364.
[4] 何熙巽, 张玉清, 刘奇旭. 软件供应链安全综述[J]. 信息安全学报, 2020, 5(1): 57-73.
HE X X, ZHANG Y Q, LIU Q X. Survey of software supply chain security[J]. Journal of Cyber Security, 2020, 5(1): 57-73.
[5] DUAN R A, BIJLANI A, XU M, et al. Identifying open-source license violation and 1-day security risk at large scale[C]//Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2017: 2169-2185.
[6] WOO S, PARK S, KIM S, et al. CENTRIS: a precise and scalable approach for identifying modified open-source software reuse[C]//Proceedings of the 2021 IEEE/ACM 43rd International Conference on Software Engineering. Piscataway: IEEE, 2021: 860-872.
[7] WU J H, XU Z Z, TANG W, et al. OSSFP: precise and scalable C/C third-party library detection using fingerprinting functions[C]//Proceedings of the 2023 IEEE/ACM 45th International Conference on Software Engineering. Piscataway: IEEE, 2023: 270-282.
[8] LI M H, WANG W, WANG P, et al. LibD: scalable and precise third-party library detection in Android markets[C]//Proceedings of the 2017 IEEE/ACM 39th International Conference on Software Engineering. Piscataway: IEEE, 2017: 335-346.
[9] TANG W, LUO P, FU J L, et al. LibDX: a cross-platform and accurate system to detect third-party libraries in binary code[C]//Proceedings of the 2020 IEEE 27th International Conference on Software Analysis, Evolution and Reengineering. Piscataway: IEEE, 2020: 104-115.
[10] TANG W, WANG Y L, ZHANG H Y, et al. LibDB: an effective and efficient framework for detecting third-party libraries in binaries[C]//Proceedings of the 19th International Conference on Mining Software Repositories. New York: ACM, 2022: 423-434.
[11] YANG C, XU Z Z, CHEN H X, et al. ModX: binary level partially imported third-party library detection via program modularization and semantic matching[C]//Proceedings of the 2022 IEEE/ACM 44th International Conference on Software Engineering. Piscataway: IEEE, 2022: 1393-1405.
[12] LI S Y, WANG Y P, DONG C P, et al. LibAM: an area matching framework for detecting third-party libraries in binaries[J]. ACM Transactions on Software Engineering and Methodology, 2024, 33(2): 1-35.
[13] MA Z A, WANG H Y, GUO Y, et al. LibRadar: fast and accurate detection of third-party libraries in Android apps[C]//Proceedings of the 38th International Conference on Software Engineering Companion. New York: ACM, 2016: 653-656.
[14] TANG W, XU Z Z, LIU C W, et al. Towards understanding third-party library dependency in C/C++ ecosystem[C]//Proceedings of the 37th IEEE/ACM International Conference on Automated Software Engineering. New York: ACM, 2022: 1-12.
[15] NA Y, WOO S, LEE J, et al. Cneps: a precise approach for examining dependencies among third-party C/C++ open-source components[C]//Proceedings of the 2024 IEEE/ACM 46th International Conference on Software Engineering. Piscataway: IEEE, 2024: 2918-2929.
[16] JIANG L, YUAN H C, TANG Q Y, et al. Third-party library dependency for large-scale SCA in the C/C++ ecosystem: how far are we?[C]//Proceedings of the 32nd ACM SIGSOFT International Symposium on Software Testing and Analysis. New York: ACM, 2023: 1383-1395.
[17] SAJNANI H, SAINI V, SVAJLENKO J, et al. SourcererCC: scaling code clone detection to big-code[C]//Proceedings of the 2016 IEEE/ACM 38th International Conference on Software Engineering. Piscataway: IEEE, 2016: 1157-1168.
[18] 陈秋远, 李善平, 鄢萌, 等. 代码克隆检测研究进展[J]. 软件学报, 2019, 30(4): 962-980.
CHEN Q Y, LI S P, YAN M, et al. Code clone detection: a literature review[J]. Journal of Software, 2019, 30(4): 962-980.
[19] ZAKERI-NASRABADI M, PARSA S, RAMEZANI M, et al. A systematic literature review on source code similarity measurement and clone detection: techniques, applications, and challenges[J]. Journal of Systems and Software, 2023, 204: 111796.
[20] KAMIYA T, KUSUMOTO S, INOUE K. CCFinder: a multi-linguistic token-based code clone detection system for large scale source code[J]. IEEE Transactions on Software Engineering, 2002, 28(7): 654-670.
[21] LOPES C V, MAJ P, MARTINS P, et al. DéjàVu: a map of code duplicates on GitHub[J]. Proceedings of the ACM on Programming Languages, 2017, 1: 84.
[22] JIANG L X, MISHERGHI G, SU Z D, et al. DECKARD: scalable and accurate tree-based detection of code clones[C]//Proceedings of the 29th International Conference on Software Engineering. Piscataway: IEEE, 2007: 96-105.
[23] GAO Y, WANG Z, LIU S, et al. TECCD: a tree embedding approach for code clone detection[C]//Proceedings of the 2019 IEEE International Conference on Software Maintenance and Evolution. Piscataway: IEEE, 2019: 145-156.
[24] CHOCHLOV M, AHMED G A, PATTEN J V, et al. Using a nearest-neighbour, BERT-based approach for scalable clone detection[C]//Proceedings of the 2022 IEEE International Conference on Software Maintenance and Evolution. Piscataway: IEEE, 2022: 582-591.
[25] HU Y T, ZOU D Q, PENG J R, et al. TreeCen: building tree graph for scalable semantic code clone detection[C]//Proceedings of the 37th IEEE/ACM International Conference on Automated Software Engineering. New York: ACM, 2022: 1-12.
[26] SIVAKUMAR S, VIDELA L S, RAJESH KUMAR T, et al. Review on Word2Vec word embedding neural net[C]//Proceedings of the 2020 International Conference on Smart Electronics and Communication. Piscataway: IEEE, 2020: 282-290.
[27] NISHIOKA D, KAMIYA T. Towards informative tagging of code fragments to support the investigation of code clones[C]//Proceedings of the 2021 IEEE 15th International Workshop on Software Clones. Piscataway: IEEE, 2021: 8-14.
[28] HUANG J. Code clone detection based on Doc2vec model and bagging[C]//Proceedings of the 2022 2nd International Conference on Control and Intelligent Robotics. New York: ACM, 2022: 649-653.
[29] PANG G S, SHEN C H, CAO L B, et al. Deep learning for anomaly detection[J]. ACM Computing Surveys, 2022, 54(2): 1-38.
[30] JAFARI O, MAURYA P, NAGARKAR P, et al. A survey on locality sensitive hashing algorithms and their applications [EB/OL]. [2024-08-10]. https://arxiv.org/abs/2102.08942.
[31] SAXENA A, PRASAD M, GUPTA A, et al. A review of clustering techniques and developments[J]. Neurocomputing, 2017, 267: 664-681.
[32] 田甜, 巩敦卫. 并发程序变异测试研究综述[J]. 电子学报, 2020, 48(11): 2267-2277.
TIAN T, GONG D W. Survey on mutation testing of concurrent programs[J]. Acta Electronica Sinica, 2020, 48(11): 2267-2277. |