[1] 常钰, 王钢, 朱鹏, 等. 工业互联网安全知识图谱构建研究综述[J]. 计算机科学与探索, 2024, 18(2): 279-300.
CHANG Y, WANG G, ZHU P, et al. Survey of research on construction method of industry Internet security knowledge graph[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(2): 279-300.
[2] 柴浩轩, 金曦, 许驰, 等. 面向工业物联网的5G机器学习研究综述[J]. 信息与控制, 2023, 52(3): 257-276.
CHAI H X, JIN X, XU C, et al. Review of machine learning-based 5G for industrial Internet of things[J]. Information and Control, 2023, 52(3): 257-276.
[3] 王振东, 刘尧迪, 杨书新, 等. 基于天牛群优化与改进正则化极限学习机的网络入侵检测[J]. 自动化学报, 2022, 48(12): 3024-3041.
WANG Z D, LIU Y D, YANG S X, et al. Network intrusion detection based BSO and improved RELM[J]. Acta Automatica Sinica, 2022, 48(12): 3024-3041.
[4] 杨超城, 严宣辉, 陈容均, 等. 融合双重注意力机制的时间序列异常检测模型[J]. 计算机科学与探索, 2024, 18(3): 740-754.
YANG C C, YAN X H, CHEN R J, et al. Time series anomaly detection model with dual attention mechanism[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(3): 740-754.
[5] 屠雅春, 许驰, 杜昕宜, 等. 基于字符距离聚类的未知工控协议分类方法[J]. 计算机应用研究, 2023, 40(12): 3696-3700.
TU Y C, XU C, DU X Y, et al. Character distance clustering-based classification algorithm for unknown industrial control protocols[J]. Application Research of Computers, 2023, 40(12): 3696-3700.
[6] CAI J, WANG Q, LUO J Z, et al. CapBad: content-agnostic, payload-based anomaly detector for industrial control protocols[J]. IEEE Internet of Things Journal, 2022, 9(14): 12542-12554.
[7] WANG W P, WANG Z R, ZHOU Z F, et al. Anomaly detection of industrial control systems based on transfer learning[J]. Tsinghua Science and Technology, 2021, 26(6): 821-832.
[8] ABDELATY M, DORIGUZZI-CORIN R, SIRACUSA D. DAICS: a deep learning solution for anomaly detection in industrial control systems[J]. IEEE Transactions on Emerging Topics in Computing, 2022, 10(2): 1117-1129.
[9] WANG X D, GARG S, LIN H, et al. Toward accurate anomaly detection in industrial Internet of Things using hierarchical federated learning[J]. IEEE Internet of Things Journal, 2022, 9(10): 7110-7119.
[10] KAUR D, ANWAR A, KAMWA I, et al. A Bayesian deep learning approach with convolutional feature engineering to discriminate cyber-physical intrusions in smart grid systems[J]. IEEE Access, 2023, 11: 18910-18920.
[11] XU C, DU X Y, LI L, et al. End-edge collaborative lightweight secure federated learning for anomaly detection of wireless industrial control systems[J]. IEEE Open Journal of the Industrial Electronics Society, 2024, 5: 132-142.
[12] DU X Y, XU C, LI L, et al. Multigranularity feature automatic marking-based deep learning for anomaly detection of industrial control systems[J]. IEEE Open Journal of Instrumentation and Measurement, 2024, 3: 2500110.
[13] AHMAD R, ALSMADI I, ALHAMDANI W, et al. Zero-day attack detection: a systematic literature review[J]. Artificial Intelligence Review, 2023, 56(10): 10733-10811.
[14] SANDBERG H, GUPTA V, JOHANSSON K H. Secure networked control systems[J]. Annual Review of Control, Robotics, and Autonomous Systems, 2022, 5: 445-464.
[15] VETTORUZZO A, BOUGUELIA M R, VANSCHOREN J, et al. Advances and challenges in meta-learning: a technical review[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024, 46(7): 4763-4779.
[16] FINN C, ABBEEL P, LEVINE S. Model-agnostic meta-learning for fast adaptation of deep networks[C]//Proceedings of the 34th International Conference on Machine Learning, 2017: 1126-1135.
[17] TIAN Y J, ZHAO X X, HUANG W. Meta-learning approa-ches for learning-to-learn in deep learning: a survey[J]. Neuro-computing, 2022, 494: 203-223.
[18] RAVI S, LAROCHELLE H. Optimization as a model for few-shot learning[C]//Proceedings of the 5th International Conference on Learning Representations, 2017.
[19] XU C Y, SHEN J Z, DU X. A method of few-shot network intrusion detection based on meta-learning framework[J]. IEEE Transactions on Information Forensics and Security, 2020, 15: 3540-3552.
[20] KIM M. ML/CGAN: network attack analysis using CGAN as meta-learning[J]. IEEE Communications Letters, 2021, 25(2): 499-502.
[21] LU C M, WANG X F, YANG A M, et al. A few-shot-based model-agnostic meta-learning for intrusion detection in security of Internet of things[J]. IEEE Internet of Things Journal, 2023, 10(24): 21309-21321.
[22] SHARAFALDIN I, LASHKARI A H, HAKAK S, et al. Developing realistic distributed denial of service (DDoS) attack dataset and taxonomy[C]//Proceedings of the 2019 International Carnahan Conference on Security Technology. Piscataway: IEEE, 2019: 1-8.
[23] SHARAFALDIN I, LASHKARI A H, GHORBANI A A. Toward generating a new intrusion detection dataset and intrusion traffic characterization[C]//Proceedings of the 4th International Conference on Information Systems Security and Privacy, 2018: 108-116.
[24] TAVALLAEE M, BAGHERI E, LU W, et al. A detailed analysis of the KDD CUP 99 data set[C]//Proceedings of the 2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications. Piscataway: IEEE, 2009: 1-6.
[25] VINYALS O, BLUNDELL C, LILLICRAP T, et al. Matching networks for one shot learning[C]//Advances in Neural Information Processing Systems 29, 2016. |