
Journal of Frontiers of Computer Science and Technology ›› 2025, Vol. 19 ›› Issue (9): 2273-2301.DOI: 10.3778/j.issn.1673-9418.2412035
• Frontiers·Surveys • Previous Articles Next Articles
LIU Zhuang, WU Yuhe, CHEN Yuran, LIU Ruitong, DONG Yanning, ZHAO Jun
Online:2025-09-01
Published:2025-09-01
刘壮,吴宇赫,陈雨然,刘芮彤,董晏宁,赵军
LIU Zhuang, WU Yuhe, CHEN Yuran, LIU Ruitong, DONG Yanning, ZHAO Jun. Integrated Sensing, Communication and Computing: Key Technologies, Challenges, and Future Trends[J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(9): 2273-2301.
刘壮, 吴宇赫, 陈雨然, 刘芮彤, 董晏宁, 赵军. 通信-感知-计算融合:关键技术、挑战与未来趋势[J]. 计算机科学与探索, 2025, 19(9): 2273-2301.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2412035
| [1] LIU X M, NGAI E. Distributed machine learning for Internet-of-things in smart cities[C]//Proceedings of the 2019 IEEE International Conference on Industrial Internet. Piscataway: IEEE, 2019: 368-374. [2] 徐勇军, 曹娜, 陈前斌. 通信感知一体化波形设计方法综述[J]. 重庆邮电大学学报(自然科学版), 2023, 35(6): 981-991. XU Y J, CAO N, CHEN Q B. Survey on waveform design methods for integrated sensing and communication[J]. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition), 2023, 35(6): 981-991. [3] 钟怡, 毕添琪, 王菊, 等. 面向通信感知一体化的无线跨域感知研究综述[J]. 信号处理, 2023, 39(6): 951-962. ZHONG Y, BI T Q, WANG J, et al. Survey on cross-domain based device-free sensing technology for integrated sensing and communication[J]. Journal of Signal Processing, 2023, 39(6): 951-962. [4] ZHAO M K, HUANG Y S, LI X. Federated learning for 6G: a survey from perspective of integrated sensing, communication and computation[J]. ZTE Communications, 2023, 21(2): 25-33. [5] WANG X J, GUO Q, NING Z L, et al. Integration of sensing, communication, and computing for metaverse: a survey[J]. ACM Computing Surveys, 2024, 56(10): 1-38. [6] 于刊, 李东, 张奇勋, 等. 车联网泛在感知、潜在通信、融合计算、内生安全综述: 最新进展与未来方向[J]. 通信学报, 2024, 45(11): 223-243. YU K, LI D, ZHANG Q X, et al. Survey of ubiquitons sensing, potential communication, integrated computing, and inherent security for Internet of vehicles: latest developments and future directions[J]. Journal on Communications, 2024, 45(11): 223-243. [7] WEN D Z, ZHOU Y, LI X Y, et al. A survey on integrated sensing, communication, and computation[J]. IEEE Communications Surveys & Tutorials, 2024. DOI: 10.1109/COMST. 2024.3521498. [8] 闫实, 彭木根, 王文博. 通信-感知-计算融合: 6G愿景与关键技术[J]. 北京邮电大学学报, 2021, 44(4): 1-11. YAN S, PENG M G, WANG W B. Integration of communication, sensing and computing: the vision and key technologies of 6G[J]. Journal of Beijing University of Posts and Telecommunications, 2021, 44(4): 1-11. [9] 裴郁杉, 唐雄燕, 黄蓉, 等. 通信感知计算融合在工业互联网中的愿景与关键技术[J]. 邮电设计技术, 2022(3): 14-18. PEI Y S, TANG X Y, HUANG R, et al. Vision and key technologies of communication sensing and computing integration in industrial Internet[J]. Designing Techniques of Posts and Telecommunications, 2022(3): 14-18. [10] 5G网络规模和质量世界领先——中国5G移动电话用户占比近半[N/OL]. 人民日报(海外版), 2024-01-30. [2024-11-28]. https://www.gov.cn/yaowen/liebiao/202401/content_6929059.htm. China leads in 5G network scale and quality—nearly half of the world??s 5G mobile users are in China[N/OL]. People??s Daily (Overseas Edition), 2024-01-30. [2024-11-28]. https://www.gov.cn/yaowen/liebiao/202401/content_6929059.htm. [11] 新华社. 我国成功搭建国际首个通信与智能融合的6G试验网[EB/OL]. [2024-11-28]. https://www.gov.cn/yaowen/liebiao/202401/content_6929059.htm. Xinhua News Agency. China successfully builds the world??s first 6G test network integrating communication and intelligence[EB/OL]. [2024-11-28]. https://www.gov.cn/yaowen/liebiao/202401/content_6929059.htm. [12] 汪春霆. 新基建下的卫星通信与5G/6G[C]//2020中国卫星应用大会报告集. 北京: 中国通信学会, 2020: 56. WANG C T. Satellite communication and 5G/6G undue new infrastructure[C]//2020 China Satellite Application Conference Report Collection. Beijing: China Institute of Communications, 2020: 56. [13] QIAO L, LI Y J, CHEN D L, et al. A survey on 5G/6G, AI, and robotics[J]. Computers and Electrical Engineering, 2021, 95: 107372. [14] MCGOLDRICK P, GRIFFITHS G J, NEMET A, et al. MIMO assembly of a meandered-line antenna for 6G and beyond indoor wireless frontends[C]//Proceedings of the 2024 IEEE International Symposium on Antennas and Propagation and INC/USNC-URSI Radio Science Meeting. Piscataway: IEEE, 2024: 383-384. [15] FETTWEIS G, HASSLER M, WITTIG R, et al. A low-power scalable signal processing chip platform for 5G and beyond-kachel[C]//Proceedings of the 2019 53rd Asilomar Conference on Signals, Systems, and Computers. Piscataway: IEEE, 2019: 896-900. [16] RASTI M, TASKOU S K, TABASSUM H, et al. Evolution toward 6G multi-band wireless networks: a resource management perspective[J]. IEEE Wireless Communications, 2022, 29(4): 118-125. [17] 郎为民, 马卫国, 安海燕, 等. 6G关键能力指标分析[J]. 电信快报, 2023(9): 1-3. LANG W M, MA W G, AN H Y, et al. Analysis of 6G key capability[J]. Telecommunications Information, 2023(9): 1-3. [18] 彭木根. 主编观点[J]. 移动通信, 2024, 48(3): 1. PENG M G. Editor-in-Chief??s perspective[J]. Mobile Communications, 2024, 48(3): 1. [19] 潘成康, 王爱玲, 刘建军, 等. 无线感知通信一体化关键技术分析[J]. 无线电通信技术, 2021, 47(2): 143-148. PAN C K, WANG A L, LIU J J, et al. Technology analysis of integration of wireless sensing and communication[J]. Radio Communications Technology, 2021, 47(2): 143-148. [20] CURRIE A, BROWN M A. Wide-swath SAR[J]. IEE Proceedings F (Radar and Signal Processing), 1992, 139(2): 122. [21] WERNER C, WEGMüLLER U, STROZZI T, et al. Gammar SAR and interferometric processing software[C]//Proceedings of the ERS-Envisat symposium, 2000: 1620. [22] CHEN X Y, KE J C, TANG W K, et al. Design and implementation of MIMO transmission based on dual-polarized reconfigurable intelligent surface[J]. IEEE Wireless Communications Letters, 2021, 10(10): 2155-2159. [23] ROHLING H, MEINECKE M M. Waveform design principles for automotive radar systems[C]//Proceedings of the 2001 CIE International Conference on Radar. Piscataway: IEEE, 2002: 1-4. [24] SHI C G, WANG F, SELLATHURAI M, et al. Power minimization-based robust OFDM radar waveform design for radar and communication systems in coexistence[J]. IEEE Transactions on Signal Processing, 2018, 66(5): 1316-1330. [25] KURACH K, LUCIC M, ZHAI X, et al. The GAN landscape: losses, architectures, regularization, and normalization [EB/OL]. [2024-11-30]. https://arxiv.org/abs/1807.04720. [26] LI X, WANG C Y, YUAN H, et al. Smeared spectrum jamming suppression based on time unit analysis and polarization cancellation[J]. Cluster Computing, 2019, 22(6): 14367-14375. [27] KHOBAHI S, BOSE A, SOLTANALIAN M. Deep radar waveform design for efficient automotive radar sensing[C]//Proceedings of the 2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop. Piscataway: IEEE, 2020: 1-5. [28] RADFORD A, KIM J W, HALLACY C, et al. Learning transferable visual models from natural language supervision[C]//Proceedings of the 38th International Conference on Machine Learning, 2021: 8748-8763. [29] LI J N, LI D X, XIONG C M, et al. BLIP: bootstrapping language-image pre-training for unified vision-language understanding and generation[C]//Proceedings of the 39th International Conference on Machine Learning, 2022: 12888-12900. [30] BALTRU?AITIS T, AHUJA C, MORENCY L P. Multimodal machine learning: a survey and taxonomy[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 41(2): 423-443. [31] HUANG X J, MA T H, JIA L, et al. An effective multimodal representation and fusion method for multimodal intent recognition[J]. Neurocomputing, 2023, 548: 126373. [32] ZHAO S D, LIU T, ZHAO S C, et al. A neural multi-task learning framework to jointly model medical named entity recognition and normalization[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33(1): 817-824. [33] AKHTAR M S, CHAUHAN D S, GHOSAL D, et al. Multi-task learning for multi-modal emotion recognition and sentiment analysis[EB/OL]. [2024-11-30]. https://arxiv.org/abs/1905.05812. [34] VENUGOPALAN S, XU H, DONAHUE J, et al. Translating videos to natural language using deep recurrent neural networks[EB/OL]. [2024-11-30]. https://arxiv.org/abs/1412.4729. [35] KLINE A, WANG H Y, LI Y K, et al. Multimodal machine learning in precision health: a scoping review[J]. NPJ Digital Medicine, 2022, 5: 171. [36] BARNUM G, TALUKDER S, YUE Y. On the benefits of barly fusion in multimodal representation learning[EB/OL]. [2024-11-30]. https://arxiv.org/abs/2011.07191. [37] WU J J, GAO J, YI J G, et al. Environment perception techno-logy for intelligent robots in complex environments: a review[C]//Proceedings of the 2022 7th International Conference on Communication, Image and Signal Processing. Piscataway: IEEE, 2022: 479-485. [38] SUN L N, XU H, WANG Z H, et al. Review on key common technologies for intelligent applications of industrial robots[J]. Journal of Vibration, Measurement and Diagnosis, 2021, 41(2): 211-219. [39] 胡青松, 孟春蕾, 李世银, 等. 矿井无人驾驶环境感知技术研究现状及展望[J]. 工矿自动化, 2023, 49(6): 128-140. HU Q S, MENG C L, LI S Y, et al. Research status and prospects of perception technology for unmanned mining vehicle driving environment[J]. Journal of Mine Automation, 2023, 49(6): 128-140. [40] 喻俊志, 孔诗涵, 孟岩. 水下视觉环境感知方法与技术[J]. 机器人, 2022, 44(2): 224-235. YU J Z, KONG S H, MENG Y. Methods and technologies for visual perception of underwater environment[J]. Robot, 2022, 44(2): 224-235. [41] 邸凯昌, 王镓, 邢琰, 等. 深空探测车环境感知与导航定位技术进展与展望[J]. 测绘学报, 2021, 50(11): 1457-1468. DI K C, WANG J, XING Y, et al. Progresses and prospects of environment perception and navigation for deep space exploration rovers[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(11): 1457-1468. [42] AMIGONI F, SOMALVICO M. Multiagent systems for environmental perception[C]//Proceedings of the 3rd AMS Conference on Artificial Intelligence Applications to Environmental Science, 2023: 487. [43] 陈睿韵, 田文斌, 鲍海波, 等. 农业轮式机器人三维环境感知技术研究进展[J]. 智慧农业, 2023, 5(4): 16-32. CHEN R Y, TIAN W B, BAO H B, et al. Three-dimensional environment perception technology for agricultural wheeled robots: a review[J]. Smart Agriculture, 2023, 5(4): 16-32. [44] 胡泽杨, 成国梁, 游昌盛. 基于信道知识地图的智能通信与感知技术[J]. 无线电工程, 2025, 55(4): 757-766. HU Z Y, CHENG G L, YOU C S. Intelligent communication and sensing technologies based on channel knowledge map[J]. Radio Engineering, 2025, 55(4): 757-766. [45] LI J, GAO H, LV T J, et al. Deep reinforcement learning based computation offloading and resource allocation for MEC[C]//Proceedings of the 2018 IEEE Wireless Communications and Networking Conference. Piscataway: IEEE, 2018: 1-6. [46] YAN J, LU Q, GIANNAKIS G B. Bayesian optimization for task offloading and resource allocation in mobile edge computing[C]//Proceedings of the 2022 56th Asilomar Conference on Signals, Systems, and Computers. Piscataway: IEEE, 2022: 1086-1090. [47] FANG F, XU Y Q, DING Z G, et al. Optimal resource allocation for delay minimization in NOMA-MEC networks[J]. IEEE Transactions on Communications, 2020, 68(12): 7867-7881. [48] WU Y C, DINH T Q, FU Y R, et al. A hybrid DQN and optimization approach for strategy and resource allocation in MEC networks[J]. IEEE Transactions on Wireless Communications, 2021, 20(7): 4282-4295. [49] MAHMUD R, SRIRAMA S N, RAMAMOHANARAO K, et al. Profit-aware application placement for integrated fog-cloud computing environments[J]. Journal of Parallel and Distributed Computing, 2020, 135: 177-190. [50] PAN Y J, PAN C H, WANG K Z, et al. Cost minimization for cooperative computation framework in MEC networks[J]. IEEE Transactions on Wireless Communications, 2021, 20(6): 3670-3684. [51] DAI P L, HU K W, WU X, et al. A probabilistic approach for cooperative computation offloading in MEC-assisted vehicular networks[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(2): 899-911. [52] WANG B, LIU Y Q, SHOU G C, et al. Energy consumption minimization using data compression in mobile edge computing[C]//Proceedings of the 2020 IEEE/CIC International Conference on Communications in China. Piscataway: IEEE, 2020: 911-916. [53] WAN S H, LI X, XUE Y, et al. Efficient computation offloading for Internet of vehicles in edge computing-assisted 5G networks[J]. The Journal of Supercomputing, 2020, 76(4): 2518-2547. [54] EL HOUDA Z A, BRIK B, KSENTINI A, et al. A MEC-based architecture to secure IoT applications using federated deep learning[J]. IEEE Internet of Things Magazine, 2023, 6(1): 60-63. [55] HAO X, YEOH P L, SHE C Y, et al. Secure deep reinforcement learning for dynamic resource allocation in wireless MEC networks[J]. IEEE Transactions on Communications, 2024, 72(3): 1414-1427. [56] LI C Y, LIN Y D, LAI Y C, et al. Transparent AAA security design for low-latency MEC-integrated cellular networks[J]. IEEE Transactions on Vehicular Technology, 2020, 69(3): 3231-3243. [57] WANG K D, LI H D, DING Z G, et al. Reinforcement learning based latency minimization in secure NOMA-MEC systems with hybrid SIC[J]. IEEE Transactions on Wireless Communications, 2023, 22(1): 408-422. [58] HE B, BAI K J. Digital twin-based sustainable intelligent manufacturing: a review[J]. Advances in Manufacturing, 2021, 9(1): 1-21. [59] LI B, PETROPULU A P, TRAPPE W. Optimum co-design for spectrum sharing between matrix completion based MIMO radars and a MIMO communication system[J]. IEEE Transactions on Signal Processing, 2016, 64(17): 4562-4575. [60] LI B, PETROPULU A P. Joint transmit designs for coexistence of MIMO wireless communications and sparse sensing radars in clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(6): 2846-2864. [61] LIU R, LI M, LUO H H, et al. Integrated sensing and communication with reconfigurable intelligent surfaces: opportunities, applications, and future directions[J]. IEEE Wireless Communications, 2023, 30(1): 50-57. [62] ELBIR A M, MISHRA K V, SHANKAR M R B, et al. The rise of intelligent reflecting surfaces in integrated sensing and communications paradigms[J]. IEEE Network, 2023, 37(6): 224-231. [63] KHAWAR A, ABDELHADI A, CLANCY C. Target detection performance of spectrum sharing MIMO radars[J]. IEEE Sensors Journal, 2015, 15(9): 4928-4940. [64] WANG J J, JIANG C X, ZHANG H J, et al. Thirty years of machine learning: the road to Pareto-optimal wireless networks[J]. IEEE Communications Surveys & Tutorials, 2020, 22(3): 1472-1514. [65] ZHOU X W, SUN M X, LI G Y, et al. Intelligent wireless communications enabled by cognitive radio and machine learning[J]. China Communications, 2018, 15(12): 16-48. [66] WANG Y X, WU K S, NI L M. WiFall: device-free fall detection by wireless networks[J]. IEEE Transactions on Mobile Computing, 2017, 16(2): 581-594. [67] HUANG J, WANG C X, BAI L, et al. A big data enabled channel model for 5G wireless communication systems[J]. IEEE Transactions on Big Data, 2018, 6(2): 211-222. [68] CAO Y J, WANG F C, LU X X, et al. Contactless body movement recognition during sleep via WiFi signals[J]. IEEE Internet of Things Journal, 2019, 7(3): 2028-2037. [69] LI J Q, HWANG S H. Adaptive beamforming scheme for coexistence of 5G base station and radar altimeter[J]. ICT Express, 2025, 11(2): 217-222. [70] RODRIGUEZ-ORDUNA E, ANTONIO-LOPEZ J E, AMEZCUA-CORREA R, et al. RF signal transmission using coherence modulation and space division multiplexing[J]. Optics and Lasers in Engineering, 2025, 186: 108776. [71] WANG R F, ZHANG X Z, ZHANG S L, et al. Multi-channel FBG frequency division multiplexing sensing system based on EOIM and OFDL[J]. Optics Communications, 2025, 576: 131320. [72] MA R H, XU J. A high-performance reversible data hiding scheme for audio streams base on code division multiplexing[J]. IEICE Communications Express, 2025, 14(3): 107-110. [73] 刘家亮, 王文博, 张凡, 等. 基于堆叠式传感器的胡萝卜播种机监控系统[J]. 工程机械, 2025, 56(1): 16-20. LIU J L, WANG W B, ZHANG F, et al. Monitoring system for carrot seeder based on stacked sensors[J]. Construction Machinery and Equipment, 2025, 56(1): 16-20. [74] 张伟, 吴季航, 杜雨鑫, 等. 基于光纤无线融合的监测通信一体化系统[J]. 测试技术学报, 2025, 39(1): 1-6. ZHANG W, WU J H, DU Y X, et al. Integrated monitoring and communication system based on fiber wireless fusion[J]. Journal of Test and Measurement Technology, 2025, 39(1): 1-6. [75] 冯志勇, 尉志青, 马昊, 等. 一种基于多雷达协同探测的雷达探测方法及装置: CN110261856A[P]. 2019-09-20. FENG Z Y, WEI Z Q, MA H, et al. Radar detection method and device based on multi-radar cooperative detection: CN110261856A[P]. 2019-09-20. [76] 北京邮电大学. 一种阵列天线、波束成形方法及感知和通信一体化系统: CN110611527B[P/OL]. 2021-01-15. Beijing University of Posts and Telecommunications. An array antenna, beam forming method and perception and integration of communications system: CN110611527B[P/OL]. 2021-01-15. [77] 北京邮电大学. 基于波束功率分配的雷达通信一体化协同探测方法及装置: CN110261848B[P/OL]. 2021-04-30. Beijing University of Posts and Telecommunications. Radar communications integration collaborative detection method and device based on beam power allocation: CN110261848B[P/OL]. 2021-04-30. [78] YUAN W J, WEI Z Q, YUAN J H, et al. A simple variational Bayes detector for orthogonal time frequency space (OTFS) modulation[J]. IEEE Transactions on Vehicular Technology, 2020, 69(7): 7976-7980. [79] 廖建新, 戚琦, 王敬宇, 等. 6G智能业务网络: 愿景、架构与关键技术[J]. 中国科学: 信息科学, 2024, 54(5): 991-1024. LIAO J X, QI Q, WANG J Y, et al. 6G intelligent service networking: vision, architecture, and key technologies[J]. Science in China: Information Sciences, 2024, 54(5): 991-1024. [80] 陆海涛, 周强, 代九龙, 等. 面向6G的天地一体化网络安全技术[J/OL]. 中兴通讯技术 [2024-12-05]. http://kns.cnki.net/kcms/detail/34.1228.TN.20240912.1755.002.html. LU H T, ZHOU Q, DAI J L, et al. Integrated network security technology for 6G[J/OL]. ZTE Technology Journal[2024-12-05]. http://kns.cnki.net/kcms/detail/34.1228.TN. 20240912.1755.002.html. [81] SINGH G, SANDHA S K, KANSAL A. GA optimized novel design and analysis of graphene-based antennas for THz spectroscopic security applications[J]. Journal of Magnetism and Magnetic Materials, 2024, 608: 172454. [82] KHAN L U, GUIZANI M, YAQOOB I, et al. A survey on metaverse-empowered 6G wireless systems: a security perspective[J]. Internet of Things, 2024, 28: 101325. [83] SIHAG M, MANUJA A, RANI S, et al. Synthesis of pyrazole and pyrazoline derivatives of β-ionone: exploring anti-inflammatory potential, cytotoxicity, and molecular docking insights[J]. European Journal of Medicinal Chemistry Reports, 2024, 12: 100204. [84] LEI H, ZHAO W W, HUANG F, et al. Shell thickness-dependent Au@Ag nanoparticles for surface-enhanced Raman scattering detection of pollutants[J]. Vacuum, 2024, 229: 113577. [85] LIU Y, RAZMAN M R, ZAKARIA S Z S, et al. Utilizing ubiquitous learning to foster sustainable development in rural areas: insights from 6G technology[J]. Computers in Human Behavior, 2024, 161: 108418. [86] PAL A, ROSHINI A R, VARMA M M. De-wetted gold nanostructures for SERS-based sensing of static and dynamic targets[J]. Applied Surface Science, 2024, 678: 161096. [87] 曾勇, 董珍君, 王蕙质, 等. 面向6G通信感知一体化的固定与可移动天线技术[J]. 信号处理, 2024, 40(8): 1377-1407. ZENG Y, DONG Z J, WANG H Z, et al. Fixed and movable antenna technology for 6G integrated sensing and communication[J]. Journal of Signal Processing, 2024, 40(8): 1377-1407. [88] 蒋梦浩. 6G移动通信: 演变历程、关键支柱技术、新元素及其挑战[J]. 江西科学, 2024, 42(4): 863-870. JIANG M H. 6G mobile communications: evolution, key pillar technologies, new elements and challenges[J]. Jiangxi Science, 2024, 42(4): 863-870. [89] 谢泽铖, 张曼君, 徐雷, 等. 6G网络安全新需求及关键技术研究[J]. 邮电设计技术, 2024(8): 49-52. XIE Z C, ZHANG M J, XU L, et al. Research on new requirements and key technologies for 6G network security[J]. Designing Techniques of Posts and Telecommunications, 2024(8): 49-52. [90] 王莹, 袁野, 陈源彬. 面向6G的新形态MIMO技术[J]. 北京邮电大学学报, 2024, 47(5): 1-13. WANG Y, YUAN Y, CHEN Y B. A review of new MIMO technologies in 6G[J]. Journal of Beijing University of Posts and Telecommunications, 2024, 47(5): 1-13. [91] 刁兆坤, 杨丽, 王振章. 6G通感算一体化网络关键技术和设计关键点[J]. 通信世界, 2024(14): 36-39. DIAO Z K, YANG L, WANG Z Z. Key technologies and design points of 6G integrated network of telepathy and calculation[J]. Communications World, 2024(14): 36-39. [92] 王晓云, 陆璐, 刘超, 等. 面向6G的网络架构建模、评估及优化[J]. 通信学报, 2024, 45(7): 235-249. WANG X Y, LU L, LIU C, et al. Modeling, evaluation, and optimization for 6G network architecture[J]. Journal on Communications, 2024, 45(7): 235-249. [93] 缪德山, 邓凌越, 孙建成, 等. 6G星地融合无线网络及关键技术[J]. 中兴通讯技术, 2024, 30(4): 42-49. MIAO D S, DENG L Y, SUN J C, et al. Terrestrial and satellite network integration based 6G system and its key technologies[J]. ZTE Technology Journal, 2024, 30(4): 42-49. [94] 黄宇红, 王启星, 李娜. 6G智简无线网络[J]. 中兴通讯技术, 2024, 30(4): 3-9. HUANG Y H, WANG Q X, LI N. Intelligent and lean 6G network[J]. ZTE Technology Journal, 2024, 30(4): 3-9. [95] 瞿重希, 毛浩斌, 许憧, 等. 面向6G的星地融合网络频谱共享技术[J]. 中兴通讯技术, 2024, 30(4): 50-56. QU C X, MAO H B, XU C, et al. Spectrum sharing technology for satellite-terrestrial integrated networks towards 6G[J]. ZTE Technology Journal, 2024, 30(4): 50-56. [96] 李静, 李福昌, 张涛. 基于场景需求的6G低时延高可靠性能指标体系研究[J]. 邮电设计技术, 2024(7): 13-17. LI J, LI F C, ZHANG T. Research on KPI system of 6G low-latency and high-reliability based on demands[J]. Designing Techniques of Posts and Telecommunications, 2024(7): 13-17. [97] 索士强, 黄远芳, 罗张宇, 等. 6G无线智能架构设计浅析[J]. 邮电设计技术, 2024(7): 1-8. SUO S Q, HUANG Y F, LUO Z Y, et al. Analysis of 6G wireless intelligent architecture design[J]. Designing Techniques of Posts and Telecommunications, 2024(7): 1-8. [98] 承楠, 陈芳炯, 陈文, 等. 6G全场景按需服务: 愿景、技术与展望[J]. 中国科学: 信息科学, 2024, 54(5): 1025-1054. CHENG N, CHEN F J, CHEN W, et al. 6G omni-scenario on-demand services provisioning: technology and prospect[J]. Science in China: Information Sciences, 2024, 54(5): 1025-1054. [99] 巫松. 智能网络体系背景下高职院校教学改革系统功能优化设计[J]. 网络安全和信息化, 2024(4): 109-111. WU S. Function optimization design of teaching reform system in higher vocational colleges under the background of intelligent network system[J]. Cybersecurity & Informatization, 2024(4): 109-111. [100] 汪汀岚, 高峰, 吕沛锦, 等. 5G远端干扰管理功能研究与智能网络优化[J]. 电信科学, 2023, 39(11): 145-152. WANG T L, GAO F, LYU P J, et al. 5G remote interference management function research and network intelligent optimization[J]. Telecommunications Science, 2023, 39(11): 145-152. [101] 张鹏, 肖泳, 胡记伟, 等. 联邦边缘智能网络碳排放评估及优化[J]. 物联网学报, 2024, 8(1): 98-110. ZHANG P, XIAO Y, HU J W, et al. Evaluation and optimization of carbon emission for federal edge intelligence network[J]. Chinese Journal on Internet of Things, 2024, 8(1): 98-110. [102] 杨勇. 传输网络智能优化关键技术研究及应用[J]. 长江信息通信, 2021, 34(3): 207-210. YANG Y. The research and application of key technology on the intelligent optimization of transmission network[J]. Changjiang Information & Communications, 2021, 34(3): 207-210. [103] 王友祥, 裴郁杉, 黄蓉, 等. 6G通感算一体化网络架构和关键技术研究[J]. 移动通信, 2023, 47(9): 2-10. WANG Y X, PEI Y S, HUANG R, et al. Network architecture and key technologies for 6G integrated communication, sensing and computing[J]. Mobile Communications, 2023, 47(9): 2-10. [104] 马忠贵, 李卓, 梁彦鹏. 自动驾驶车联网中通感算融合研究综述与展望[J]. 工程科学学报, 2023, 45(1): 137-149. MA Z G, LI Z, LIANG Y P. Overview and prospect of communication-sensing-computing integration for autonomous driving in the Internet of vehicles[J]. Chinese Journal of Engineering, 2023, 45(1): 137-149. [105] 王新奕, 费泽松, 周一青, 等. 面向物联网的通感算智融合: 关键技术与未来展望[J]. 电子与信息学报, 2025, 47(4): 888-908. WANG X Y, FEI Z S, ZHOU Y Q, et al. Integrated sensing, communication, computation, and intelligence towards IoT: key technologies and future directions[J]. Journal of Electronics & Information Technology, 2025, 47(4): 888-908. [106] 段向阳, 杨立, 夏树强, 等. 通感算智一体化技术发展模式[J]. 电信科学, 2022, 38(3): 37-48. DUAN X Y, YANG L, XIA S Q, et al. Technology development mode of communication/sensing/computing/intelligence integration[J]. Telecommunications Science, 2022, 38(3): 37-48. [107] LI S J, CHEN H J, LUO Y J. Research on legal liability of unmanned driving[J]. Academic Journal of Humanities & Social Sciences, 2021, 4(4):16-20. [108] 蒋杰. 北斗导航卫星系统和5G技术在无人驾驶系统领域的应用前景分析[C]//卫星导航定位与北斗系统应用 2019——北斗服务全球融合创新应用, 2019. JIANG J. Application prospect analysis of Beidou navigation satellite system and 5G technology in the field of unmanned driving systems[C]//Satellite Navigation Positioning and Beidou System Application 2019—Beidou Service Global Integration and Innovative Application, 2019. [109] ROVIRA A, ABBAS R, SáNCHEZ C, et al. Proposal and analysis of an integrated solar combined cycle with partial recuperation[J]. Energy, 2020, 198: 117379. [110] KHANDELWAL N, SHARMA M, SINGH O, et al. Recent developments in integrated solar combined cycle power plants[J]. Journal of Thermal Science, 2020, 29(2): 298-322. [111] 陈晋. 智能化无人机视角下隐私权保护的立法因应[J]. 法制与经济, 2024, 33(5): 27-38. CHEN J. Legislative response to privacy protection from the perspective of intelligent UAV[J]. Legal System and Economy, 2024, 33(5): 27-38. [112] 刘海峰, 吕彩霞, 张楠. 不同集成方案下ISCC系统动态性能研究[J]. 热力发电, 2023, 52(1): 149-157. LIU H F, LYU C X, ZHANG N. Research on dynamic performance of ISCC system with different integration schemes[J]. Thermal Power Generation, 2023, 52(1): 149-157. [113] 王刚, 曹勇, 王树坤, 等. ISCC分布式能源站的系统设计与初步分析[J]. 太阳能学报, 2021, 42(8): 66-70. WANG G, CAO Y, WANG S K, et al. Design and preliminary analysis of ISCC distributed energy system[J]. Acta Energiae Solaris Sinica, 2021, 42(8): 66-70. [114] 刘涛, 刘金元. 北斗卫星导航系统在无人驾驶领域的应用[J]. 信息通信, 2019, 32(11): 70-71. LIU T, LIU J Y. Application of Beidou satellite navigation system in unmanned driving field[J]. Information & Communications, 2019, 32(11): 70-71. [115] HU S, FANG Z, DENG Y, et al. Collaborative perception for connected and autonomous driving: challenges, possible solutions and opportunities[EB/OL]. [2024-12-08]. https://arxiv.org/abs/2401.01544. [116] 段建民, 石慧, 战宇辰. 基于机器视觉筛选GPS卫星信号的无人驾驶汽车组合导航方法[J]. 电子技术应用, 2016, 42(1): 111-114. DUAN J M, SHI H, ZHAN Y C. Integrated navigation system for unmanned intelligent vehicle based on vision[J]. Application of Electronic Technique, 2016, 42(1): 111-114. [117] DUAN L Q, QU W J, JIA S L, et al. Study on the integration characteristics of a novel integrated solar combined cycle system[J]. Energy, 2017, 130: 351-364. [118] 王红霞, 常成. 基于MPC的无人驾驶汽车轨迹跟踪研究[J]. 内燃机与配件, 2024(16): 29-31. WANG H X, CHANG C. Trajectory tracking of unmanned vehicle based on MPC[J]. Internal Combustion Engine & Parts, 2024(16): 29-31. [119] 牛文杰, 伊力哈木·亚尔买买提. 面向无人驾驶场景下的道路多目标检测算法[J]. 计算机应用与软件, 2024, 41(8): 282-288. NIU W J, Yilihamu·Yaermaimaiti. A multi-target detection algorithm of road for unmanned driving scene[J]. Computer Applications and Software, 2024, 41(8): 282-288. [120] 刘明霞. 无人驾驶线路列车自动监控系统与综合监控系统集成方案研究[J]. 城市轨道交通研究, 2020, 23(S2): 70-74. LIU M X. Research on the train ATS and ISCS integration solution for driverless lines[J]. Urban Mass Transit, 2020, 23(S2): 70-74. [121] 熊天圣, 王克斌. 全自动无人驾驶综合自动化系统分析与设计[J]. 现代信息科技, 2019, 3(14): 93-95. XIONG T S, WANG K B. Analysis and design of automatic unmanned integrated automation system[J]. Modern Information Technology, 2019, 3(14): 93-95. [122] 通感算一体化网络前沿报告[R]. 中国通信学会, 2021. Comprehensive sensing and computing integrated network frontier report[R]. China Communications Society, 2021. [123] YAO J F, YANG Y, WANG X C, et al. Systematic review of digital twin technology and applications[J]. Visual Computing for Industry, Biomedicine, and Art, 2023, 6(1): 10. [124] TUEGEL E J, INGRAFFEA A R, EASON T G, et al. Reengineering aircraft structural life prediction using a digital twin[J]. International Journal of Aerospace Engineering, 2011(1): 154798. [125] ZHUANG C B, LIU J H, XIONG H, et al. Connotation, architecture and trends of product digital twin[J]. Computer Integrated Manufacturing Systems, 2017, 23(4): 753-768. [126] WEI Z, DU Y, ZHANG Q, et al. Integrated sensing and communication driven digital twin for intelligent machine network[EB/OL]. [2024-12-08]. https://arxiv.org/abs/2402.05390. [127] SUN Y K, LEI B, LIU J L, et al. Computing power network: a survey[J]. China Communications, 2024, 21(9): 109-145. [128] 雷波, 刘增义, 王旭亮, 等. 基于云、网、边融合的边缘计算新方案: 算力网络[J]. 电信科学, 2019, 35(9): 44-51. LEI B, LIU Z Y, WANG X L, et al. Computing network: a new multi-access edge computing[J]. Telecommunications Science, 2019, 35(9): 44-51. [129] 张宏科, 权伟, 刘康. 算力网络研究与探索[J]. 中兴通讯技术, 2023, 29(1): 1-5. ZHANG H K, QUAN W, LIU K. Research and exploration of computing power network[J]. ZTE Technology Journal, 2023, 29(1): 1-5. [130] 杨强根, 王晓蕊, 马维峰, 等. 基于微服务架构的地质灾害监测预警预报系统设计[J]. 地球科学, 2021, 46(4): 1505-1517. YANG Q G, WANG X R, MA W F, et al. Design of geo-hazard early warning and forecast system based on micro-service architecture[J]. Earth Science, 2021, 46(4): 1505-1517. [131] AKSAKALLI I K, ?ELIK T, CAN A B, et al. Deployment and communication patterns in microservice architectures: a systematic literature review[J]. Journal of Systems and Software, 2021, 180: 111014. [132] JANG S Y, KOSTADINOV B, LEE D M. Microservice-based edge device architecture for video analytics[C]//Proceedings of the 2021 IEEE/ACM Symposium on Edge Computing. Piscataway: IEEE, 2021: 165-177. [133] MALLIKARJUNARADHYA V, YENNAPUSA H, PALLE R R, et al. Impacts of high denisty cloud computing on data protection and security management for 6G networking[C]//Proceedings of the 2024 2nd International Conference on Disruptive Technologies. Piscataway: IEEE, 2024: 617-622. [134] ZEB S, RATHORE M A, HASSAN S A, et al. Toward AI-enabled NextG networks with edge intelligence-assisted microservice orchestration[J]. IEEE Wireless Communications, 2023, 30(3): 148-156. [135] HE Y H, YU G D, CAI Y L, et al. Integrated sensing, computation, and communication: system framework and performance optimization[J]. IEEE Transactions on Wireless Communications, 2024, 23(2): 1114-1128. [136] 沈学民, 承楠, 周海波, 等. 空天地一体化网络技术: 探索与展望[J]. 物联网学报, 2020, 4(3): 3-19. SHEN X M, CHENG N, ZHOU H B, et al. Space-air-ground integrated networks: review and prospect[J]. Chinese Journal on Internet of Things, 2020, 4(3): 3-19. [137] 范珂欣, 安丽荣, 张钦宇. 业务驱动的空天地海一体化网络技术研究[J]. 电信科学, 2024, 40(6): 25-37. FAN K X, AN L R, ZHANG Q Y. Research on service-driven network technologies for space-air-ground-sea integration[J]. Telecommunications Science, 2024, 40(6): 25-37. [138] 吴晓文, 焦侦丰, 刘冰, 等. 面向6G的卫星通感一体化[J]. 移动通信, 2022, 46(10): 2-11. WU X W, JIAO Z F, LIU B, et al. Satellite integrated sensing and communication for 6G[J]. Mobile Communications, 2022, 46(10): 2-11. [139] WANG Y J, WANG M Z, MENG L K, et al. New crowd sensing computing in space-air-ground integrated networks[C]//Proceedings of the 2021 International Conference on Space-Air-Ground Computing. Piscataway: IEEE, 2021: 143-149. [140] CHEN Q, GUO Z, MENG W X, et al. A survey on resource management in joint communication and computing-embedded SAGIN[J]. IEEE Communications Surveys & Tutorials, 2025, 27(3): 1911-1954. [141] 陈晨, 谢珊珊, 张潇潇, 等. 聚合SDN控制的新一代空天地一体化网络架构[J]. 中国电子科学研究院学报, 2015, 10(5): 450-454. CHEN C, XIE S S, ZHANG X X, et al. A new space and terrestrial integrated network architecture aggregated SDN[J]. Journal of China Academy of Electronics and Information Technology, 2015, 10(5): 450-454. [142] 邓平科, 张同须, 施南翔, 等. 星算网络: 空天地一体化算力融合网络新发展[J]. 电信科学, 2022, 38(6): 71-81. DENG P K, ZHANG T X, SHI N X, et al. Computing satellite networks: the novel development of computing-empowered space-air-ground integrated networks[J]. Telecommunications Science, 2022, 38(6): 71-81. [143] 景毅, 姜春晓, 詹亚锋. 面向卫星通信的6G通感算融合架构、技术与挑战[J]. 无线电通信技术, 2023, 49(1): 12-20. JING Y, JIANG C X, ZHAN Y F. 6G communication, sensing and computing integration for satellite communication: architectures, technologies and challenges[J]. Radio Communications Technology, 2023, 49(1): 12-20. [144] 李晨玮, 周建山, 田大新, 等. 立体交通系统通感算一体化关键技术[J]. 移动通信, 2024, 48(3): 14-20. LI C W, ZHOU J S, TIAN D X, et al. Key technology for integrated communication sensing and computing in three-dimensional transportation system[J]. Mobile Communications, 2024, 48(3): 14-20. [145] 沈映春, 张豪兴. 数字基础设施建设对低空经济高质量发展的影响研究[J]. 北京航空航天大学学报(社会科学版), 2024, 37(5): 96-108. SHEN Y C, ZHANG H X. Impact of digital infrastructure construction on the high-quality development of low-altitude economy[J]. Journal of Beijing University of Aeronautics and Astronautics (Social Sciences Edition), 2024, 37(5): 96-108. [146] FARSATH K R, JITHA K, MARWAN V K M, et al. AI-enhanced unmanned aerial vehicles for search and rescue operations[C]//Proceedings of the 2024 5th International Conference on Innovative Trends in Information Technology. Piscataway: IEEE, 2024: 1-10. [147] SONG T L, LOPEZ D, MEO M, et al. High altitude platform stations: the new network energy efficiency enabler in the 6G era[C]//Proceedings of the 2024 IEEE Wireless Communications and Networking Conference. Piscataway: IEEE, 2024: 1-6. [148] 刘壮, 宋祥瑞, 赵斯桓, 等. 进化网络模型: 无先验知识的自适应自监督持续学习[J]. 电子与信息学报, 2024, 46(8): 3256-3266. LIU Z, SONG X R, ZHAO S H, et al. EvolveNet: adaptive self-supervised continual learning without prior knowledge[J]. Journal of Electronics & Information Technology, 2024, 46(8): 3256-3266. [149] 中国移动通信集团有限公司. 低空智联网技术体系白皮书[C]//2024年世界移动通信大会, 2024. China Mobile Communications Group Co., Ltd. Low-altitude intelligent internet technology system white paper[C]//2024 Mobile World Congress, 2024. [150] 中国电信集团有限公司. 通感一体低空网络白皮书[C]//2024年世界移动通信大会, 2024. China Telecom Group Co., Ltd. Integrated sensing and communication low-altitude network white paper[C]//2024 Mobile World Congress, 2024. [151] 广东省通信学会, 中国信息通信研究院, 中国联合网络通信有限公司广东省分公司. 2024年低空智联网发展研究报告[EB/OL]. 中国信息通信研究院 [2024-12-10]. https://www.caict.ac.cn/kxyj/qwfb/ztbg. Guangdong Communication Society, China Academy of Information and Communications Technology, China Unicom Guangdong Branch. 2024 low-altitude intelligent Internet development research report[EB/OL]. China Academy of Information and Communications Technology [2024-12-10]. https://www.caict.ac.cn/kxyj/qwfb/ztbg. [152] 金凌, 曾婷, 徐宏, 等. 基于6G通感算融合的沉浸式XR实践与展望[J]. 移动通信, 2024, 48(3): 8-13. JIN L, ZENG T, XU H, et al. Immersive XR implementation and prospects based on 6G integrated sensing, communication and computing[J]. Mobile Communications, 2024, 48(3): 8-13. [153] 彭木根, 刘喜庆, 刘子乐, 等. 6G通信感知一体化理论与技术[J]. 控制与决策, 2023, 38(1): 22-38. PENG M G, LIU X Q, LIU Z L, et al. Principles and techniques in communication and sensing integrated 6G systems[J]. Control and Decision, 2023, 38(1): 22-38. [154] 尹浩, 黄宇红, 韩林丛, 等. 6G通信-感知-计算融合网络的思考[J]. 中国科学: 信息科学, 2023, 53(9): 1838-1842. YIN H, HUANG Y H, HAN L C, et al. Thoughts on 6G integrated communication, sensing and computing networks[J]. Science in China: Information Sciences, 2023, 53(9): 1838-1842. [155] 周雪, 张子扬, 刘向南, 等. 通信-感知-计算-存储深度融合下的无线资源管控[J]. 移动通信, 2024, 48(3): 26-39. ZHOU X, ZHANG Z Y, LIU X N, et al. Wireless resource management under the deep integration of communication, sensing, computing, and caching[J]. Mobile Communications, 2024, 48(3): 26-39. |
| [1] | PANG Yuan, WU Jigang, CHEN Long, YAO Mianyang. Energy Balancing for Multiple Devices with Multiple Tasks in Mobile Edge Computing [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(2): 480-488. |
| [2] | LIU Jingxin, WANG Yan, HAN Xiao, XIA Changqing, SONG Baoyan. Research on Edge Cloud Resource Pricing Mechanism Based on Stackelberg Game [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(1): 153-162. |
| [3] | LIU Jijun, ZOU Shanhua, LU Xianling. Joint Optimization Scheme of Resource Allocation and Offloading Decision in Mobile Edge Computing [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(5): 848-858. |
| [4] | ZHENG Fengbin, ZHU Dongwei, ZANG Wenqian, YANG Jinlin, ZHU Guanghui. Edge Computing:Review and Application Research on New Computing Paradigm [J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(4): 541-553. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/