Journal of Frontiers of Computer Science and Technology ›› 2022, Vol. 16 ›› Issue (1): 163-175.DOI: 10.3778/j.issn.1673-9418.2007042
• Artificial Intelligence • Previous Articles Next Articles
Received:
2020-07-07
Revised:
2020-09-04
Online:
2022-01-01
Published:
2020-09-15
About author:
LI Beibei, born in 1995, M.S. candidate. His research interests include anomaly data detection and uncertain data clustering.Supported by:
通讯作者:
+ E-mail: jnlibeibei1995@163.com作者简介:
李贝贝(1995—),男,山东滨州人,硕士研究生,主要研究方向为异常数据检测、不确定数据聚类。基金资助:
CLC Number:
LI Beibei, PENG Li. Bearing Vibration Abnormal Detection Based on Improved Autoencoder Network[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(1): 163-175.
李贝贝, 彭力. 基于改进自编码网络的轴承振动异常检测[J]. 计算机科学与探索, 2022, 16(1): 163-175.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2007042
实际类别 | 预测为异常数据 | 预测为正常数据 |
---|---|---|
实际异常数据 | TP | FN |
实际正常数据 | FP | TN |
Table 1 Evaluation index confusion matrix
实际类别 | 预测为异常数据 | 预测为正常数据 |
---|---|---|
实际异常数据 | TP | FN |
实际正常数据 | FP | TN |
类别标签 | 类别名 | 样本数 | 数据占比/% |
---|---|---|---|
0 | 正常数据 | 537 | 54.7 |
1 | 异常数据 | 445 | 45.3 |
Table 2 Size of dataset 1
类别标签 | 类别名 | 样本数 | 数据占比/% |
---|---|---|---|
0 | 正常数据 | 537 | 54.7 |
1 | 异常数据 | 445 | 45.3 |
类别标签 | 类别名 | 样本数 | 数据占比/% |
---|---|---|---|
0 | 正常数据 | 537 | 86.3 |
1 | 异常数据 | 85 | 13.7 |
Table 3 Uncertain dataset
类别标签 | 类别名 | 样本数 | 数据占比/% |
---|---|---|---|
0 | 正常数据 | 537 | 86.3 |
1 | 异常数据 | 85 | 13.7 |
参数 | 数值 |
---|---|
学习率 | 0.001 |
L2正则化惩罚因子 | 0.001 |
稀疏惩罚项权重系数 | 0.2 |
稀疏常数 | 0.04 |
一次训练选取样本数 | 10 |
输出层激活函数 | sigmoid |
输入层及隐层激活函数 | ReLU |
Table 4 Parameter setting of autoencoder
参数 | 数值 |
---|---|
学习率 | 0.001 |
L2正则化惩罚因子 | 0.001 |
稀疏惩罚项权重系数 | 0.2 |
稀疏常数 | 0.04 |
一次训练选取样本数 | 10 |
输出层激活函数 | sigmoid |
输入层及隐层激活函数 | ReLU |
网络 | Acc | Pre | Rec | F1 |
---|---|---|---|---|
不加入马氏距离 | 0.875 | 0.875 | 1.000 | 0.934 |
加入马氏距离 | 0.976 | 0.973 | 1.000 | 0.986 |
Table 5 Comparison of training data with or without Mahalanobis distance
网络 | Acc | Pre | Rec | F1 |
---|---|---|---|---|
不加入马氏距离 | 0.875 | 0.875 | 1.000 | 0.934 |
加入马氏距离 | 0.976 | 0.973 | 1.000 | 0.986 |
网络 | 一次训练所需平均时间/μs | 训练次数 | 训练所需总时间/μs |
---|---|---|---|
传统AE | 113 | 50 | 5 650 |
改进AE | 142 | 15 | 2 130 |
Table 6 Comparison of autoencoder training time
网络 | 一次训练所需平均时间/μs | 训练次数 | 训练所需总时间/μs |
---|---|---|---|
传统AE | 113 | 50 | 5 650 |
改进AE | 142 | 15 | 2 130 |
网络 | 一次训练所需平均时间/μs | 训练次数 | 训练所需总时间/μs |
---|---|---|---|
传统AN | 121 | 60 | 7 260 |
改进AN | 162 | 30 | 4 860 |
Table 7 Comparison of autoencoder network training time
网络 | 一次训练所需平均时间/μs | 训练次数 | 训练所需总时间/μs |
---|---|---|---|
传统AN | 121 | 60 | 7 260 |
改进AN | 162 | 30 | 4 860 |
网络 | Acc | Pre | Rec | F1 |
---|---|---|---|---|
传统AN | 0.927 | 0.923 | 1.000 | 0.960 |
改进AN | 0.989 | 1.000 | 0.979 | 0.989 |
Table 8 Comparison between traditional autoencoder network and improved autoencoder network
网络 | Acc | Pre | Rec | F1 |
---|---|---|---|---|
传统AN | 0.927 | 0.923 | 1.000 | 0.960 |
改进AN | 0.989 | 1.000 | 0.979 | 0.989 |
训练数据量 | 网络 | Acc | Pre | Rec | F1 |
---|---|---|---|---|---|
20% | 传统AN | 0.883 | 0.882 | 1.000 | 0.937 |
改进AN | 0.891 | 0.889 | 1.000 | 0.941 | |
40% | 传统AN | 0.870 | 0.869 | 1.000 | 0.930 |
改进AN | 0.934 | 0.931 | 1.000 | 0.964 | |
60% | 传统AN | 0.869 | 0.867 | 1.000 | 0.929 |
改进AN | 0.942 | 0.940 | 1.000 | 0.968 | |
80% | 传统AN | 0.890 | 0.888 | 1.000 | 0.941 |
改进AN | 0.977 | 0.976 | 0.999 | 0.987 |
Table 9 Experimental results comparison under different amounts of training data
训练数据量 | 网络 | Acc | Pre | Rec | F1 |
---|---|---|---|---|---|
20% | 传统AN | 0.883 | 0.882 | 1.000 | 0.937 |
改进AN | 0.891 | 0.889 | 1.000 | 0.941 | |
40% | 传统AN | 0.870 | 0.869 | 1.000 | 0.930 |
改进AN | 0.934 | 0.931 | 1.000 | 0.964 | |
60% | 传统AN | 0.869 | 0.867 | 1.000 | 0.929 |
改进AN | 0.942 | 0.940 | 1.000 | 0.968 | |
80% | 传统AN | 0.890 | 0.888 | 1.000 | 0.941 |
改进AN | 0.977 | 0.976 | 0.999 | 0.987 |
检测方法 | Acc | Pre | Rec | F1 |
---|---|---|---|---|
iForest | 0.644 | 0.606 | 0.998 | 0.754 |
KNN | 0.931 | 0.927 | 1.000 | 0.962 |
LOF | 0.920 | 0.965 | 0.885 | 0.923 |
SVM | 0.960 | 0.964 | 1.000 | 0.981 |
K-means | 0.968 | 0.982 | 1.000 | 0.981 |
DNN | 0.976 | 0.973 | 1.000 | 0.986 |
本文方法 | 0.995 | 0.991 | 1.000 | 0.995 |
Table 10 Comparison of anomaly detection algorithms with proposed method
检测方法 | Acc | Pre | Rec | F1 |
---|---|---|---|---|
iForest | 0.644 | 0.606 | 0.998 | 0.754 |
KNN | 0.931 | 0.927 | 1.000 | 0.962 |
LOF | 0.920 | 0.965 | 0.885 | 0.923 |
SVM | 0.960 | 0.964 | 1.000 | 0.981 |
K-means | 0.968 | 0.982 | 1.000 | 0.981 |
DNN | 0.976 | 0.973 | 1.000 | 0.986 |
本文方法 | 0.995 | 0.991 | 1.000 | 0.995 |
数据集 | 标签 | 类别名 | 样本数 | 数据占比/% |
---|---|---|---|---|
数据集2 | 0 | 正常数据 | 1 464 | 75.3 |
1 | 异常数据 | 479 | 24.7 | |
数据集3 | 0 | 正常数据 | 5 936 | 93.9 |
1 | 异常数据 | 388 | 6.1 | |
XJTU-SY数据集 | 0 | 正常数据 | 29 124 | 78.8 |
1 | 异常数据 | 7 836 | 21.2 |
Table 11 Size of 3 datasets
数据集 | 标签 | 类别名 | 样本数 | 数据占比/% |
---|---|---|---|---|
数据集2 | 0 | 正常数据 | 1 464 | 75.3 |
1 | 异常数据 | 479 | 24.7 | |
数据集3 | 0 | 正常数据 | 5 936 | 93.9 |
1 | 异常数据 | 388 | 6.1 | |
XJTU-SY数据集 | 0 | 正常数据 | 29 124 | 78.8 |
1 | 异常数据 | 7 836 | 21.2 |
数据集 | Acc | Pre | Rec | F1 |
---|---|---|---|---|
数据集2 | 0.985 | 1.000 | 0.980 | 0.990 |
数据集3 | 0.993 | 0.994 | 0.998 | 0.996 |
XJTU-SY数据集 | 0.984 | 0.982 | 1.000 | 0.991 |
Table 12 Experimental results on 3 datasets
数据集 | Acc | Pre | Rec | F1 |
---|---|---|---|---|
数据集2 | 0.985 | 1.000 | 0.980 | 0.990 |
数据集3 | 0.993 | 0.994 | 0.998 | 0.996 |
XJTU-SY数据集 | 0.984 | 0.982 | 1.000 | 0.991 |
[1] |
LEI Y G, LI N P, GUO L, et al. Machinery health prognostics: a systematic review from data acquisition to RUL prediction[J]. Mechanical Systems and Signal Processing, 2018, 104:799-834.
DOI URL |
[2] | 毛文涛, 田思雨, 窦智, 等. 一种基于深度迁移学习的滚动轴承早期故障在线检测方法[J/OL]. 自动化学报 [2020-05-10]. https://doi.org/10.16383/j.aas.c190593. |
MAO W T, TIAN S Y, DOU Z, et al. A new deep transfer learning-based online detection method of rolling bearing early fault[J/OL]. Acta Automatica Sinica [2020-05-10]. https://doi.org/10.16383/j.aas.c190593. | |
[3] |
LING L, CUI X, WANG Y G, et al. A novel switching unscented Kalman filter method for remaining useful life prediction of rolling bearing[J]. Measurement, 2019, 135:678-684.
DOI URL |
[4] | 程艳云, 张守超, 杨杨. 基于大数据的时间序列异常点检测研究[J]. 计算机技术与发展, 2016, 26(5):139-144. |
CHENG Y Y, ZHANG S C, YANG Y. Research on the detection of outliers in time series based on big data[J]. Computer Technology and Development, 2016, 26(5):139-144. | |
[5] |
GUO W Y, JI Y, LUO Y, et al. Substation equipment 3D identification based on KNN classification of subspace feature vector[J]. Journal of Intelligent Systems, 2019, 28(5):807-819.
DOI URL |
[6] | 刘芳, 齐建鹏, 于彦伟, 等. 基于密度的Top-n局部异常点快速检测算法[J]. 自动化学报, 2019, 45(9):1756-1771. |
LIU F, QI J P, YU Y W, et al. A fast algorithm for density-based top-n local outlier detection[J]. Acta Automatica Sinica, 2019, 45(9):1756-1771. | |
[7] | SCHÖLKOPF B, WILLIAMSON R C, SMOLA A J, et al. Support vector method for novelty detection[C]// Proceedings of the 12th International Conference on Neural Information Processing Systems, Denver, Nov 29-Dec 4, 2000. Cambridge: MIT Press, 2000: 582-588. |
[8] | LIU F T, TING K M, ZHOU Z H. Isolation forest[C]// Proceedings of the 8th IEEE International Conference on Data Mining, Pisa, Dec 15-19, 2008. Washington: IEEE Computer Society, 2008: 413-422. |
[9] |
JIA F, LEI Y G, GUO L, et al. A neural network constructed by deep learning technique and its application to intelligent fault diagnosis of machines[J]. Neurocomputing, 2018, 272:619-628.
DOI URL |
[10] |
RUMELHART D E, HINTON G E, WILLIAMS R J. Learning representations by back-propagating errors[J]. Nature, 1986, 323(6088):533-536.
DOI URL |
[11] |
HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786):504-507.
DOI URL |
[12] | NG A. Sparse autoencoder[R]. CS294A Lecture Notes, 2011: 1-19. |
[13] |
XU J, XIANG L, LIU Q S, et al. Stacked sparse autoencoder (SSAE) for nuclei detection on breast cancer histopathology images[J]. IEEE Transactions on Medical Imaging, 2016, 35(1):119-130.
DOI URL |
[14] | JIN W. A deep autoencoder based outlier detection for time series[C]// Proceedings of the 2018 3rd International Conference on Computer Science and Information Engineering, Xi’an, Sep 21-22, 2018. Piscataway: IEEE, 2018: 305-309. |
[15] | 张西宁, 向宙, 唐春华. 一种深度卷积自编码网络及其在滚动轴承故障诊断中的应用[J]. 西安交通大学学报, 2018, 52(7):1-8. |
ZHANG X N, XIANG Z, TANG C H. A deep convolutional auto-encoding neural network and its application in bearing fault diagnosis[J]. Journal of Xi’an Jiaotong University, 2018, 52(7):1-8. | |
[16] |
IMANI M. Difference-based target detection using Mahala-nobis distance and spectral angle[J]. International Journal of Remote Sensing, 2019, 40(3/4):811-831.
DOI URL |
[17] | THEODORIDIS S. Neural networks and deep learning[M]// Machine Learning. Orlando: Academic Press, 2016: 875-936. |
[18] |
KULLBACK S, LEIBLER R A. On information and sufficiency[J]. The Annals of Mathematical Statistics, 1951, 22(1):79-86.
DOI URL |
[19] | COATES A, NG A Y, LEE H. An analysis of single-layer networks in unsupervised feature learning[C]// Proceedings of the 14th International Conference on Artificial Intelligence and Statistics, Fort Lauderdale, Apr 11-13, 2011: 215-233. |
[20] |
TOBON-MEJIA DIEGO A, MEDJAHER K, ZERHOUNI N. A data-driven failure prognostics method based on mixture of Gaussians hidden Markov models[J]. IEEE Transactions on Reliability, 2012, 61(2):491-503.
DOI URL |
[21] |
WANG B, LEI Y G, LI N P, et al. A hybrid prognostics approach for estimating remaining useful life of rolling element bearings[J]. IEEE Transactions on Reliability, 2020, 69(1):401-412.
DOI URL |
[1] | YANG Zheng, DENG Zhaohong, LUO Xiaoqing, GU Xin, WANG Shitong. Target Tracking System Constructed by ELM-AE and Transfer Representation Learning [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(7): 1633-1648. |
[2] | ZHU Zhuangzhuang, ZHOU Zhiping. Detection of Health Data Based on Gaussian Mixture Generative Model [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(5): 1128-1135. |
[3] | YANG Zhangjing, WANG Wenbo, HUANG Pu, ZHANG Fanlong. Denoising Latent Subspace Based Subspace Learning for Image Classification [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(12): 2374-2389. |
[4] | WANG Muxian, DING Xiaoou, WANG Hongzhi, LI Jianzhong. Correlation-Based Method for Tracing Multi-dimensional Time Series Data Anomalies [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(11): 2142-2150. |
[5] | CHENG Yusheng, LI Zhiwei, PANG Shufang. Multi-Label Feature Extraction Method Relied on Feature-Label Dependence Auto-encoder [J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(3): 470-481. |
[6] | ZHANG Mohua, PENG Jianhua. Hierarchical Bayesian Local Gaussian Mixture Model for Image Restoration [J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(2): 325-335. |
[7] | YANG Jie, TANG Yachun, TAN Daojun, LIU Xiaobing. Intrusion Detection Method of Multi-channel Autoencoder Deep Learning [J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(12): 2050-2060. |
[8] | LIU Shaoqin, TANG Shuang, ZHAO Junfeng, WANG Yasha, ZHUO Lin. Extended Topic Model Based Abnormal Medical Prescription Detection Method [J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(1): 30-39. |
[9] | XIE Juanying, HOU Qi, CAO Jiawen. Image Clustering Algorithms by Deep Convolutional Autoencoders [J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(4): 586-595. |
[10] | YANG Shuai, HU Xuegang, ZHANG Yuhong. Multi-Marginalized Denoising Autoencoders for Domain Adaptation [J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(2): 322-329. |
[11] | LONG Tingyan, WAN Liang, DING Hongwei. Application Research of Autoencoder Network in Malicious JavaScript Code Detection [J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(12): 2073-2084. |
[12] | LIU Xiaoyan, ZHANG Chengcheng, GUO Maozu, XING Linlin. Research on Transcriptional Regulatory Network Based on Combined Model [J]. Journal of Frontiers of Computer Science and Technology, 2018, 12(7): 1154-1161. |
[13] | ZHUANG Fuzhen, LUO Dan HE Qing. Ensemble Local Representation Learning Based Recommendation Algorithm [J]. Journal of Frontiers of Computer Science and Technology, 2018, 12(6): 851-858. |
[14] | XU Yi, DONG Qing, DAI Xin, SONG Wei. ELM Optimized Deep Autoencoder Classification Algorithm [J]. Journal of Frontiers of Computer Science and Technology, 2018, 12(5): 820-827. |
[15] | KONG Jinying, LI Xiao, WANG Lei, YANG Yating, LUO Yangen. Research of Deep Filtering Lexical Reordering Table [J]. Journal of Frontiers of Computer Science and Technology, 2017, 11(5): 785-793. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/