Journal of Frontiers of Computer Science and Technology ›› 2022, Vol. 16 ›› Issue (9): 2163-2176.DOI: 10.3778/j.issn.1673-9418.2102021
• Theory and Algorithm • Previous Articles
CHEN Lei, WU Runxiu(), LI Peiwu, ZHAO Jia
Received:
2021-02-05
Revised:
2021-04-02
Online:
2022-09-01
Published:
2021-04-19
About author:
CHEN Lei, born in 1997, M.S. candidate. His research interest is data mining.Supported by:
通讯作者:
+ E-mail: wurunxiu@tom.com作者简介:
陈磊(1997—),男,硕士研究生,主要研究方向为数据挖掘。基金资助:
CLC Number:
CHEN Lei, WU Runxiu, LI Peiwu, ZHAO Jia. Weighted K-nearest Neighbors and Multi-cluster Merge Density Peaks Clustering Algorithm[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(9): 2163-2176.
陈磊, 吴润秀, 李沛武, 赵嘉. 加权K近邻和多簇合并的密度峰值聚类算法[J]. 计算机科学与探索, 2022, 16(9): 2163-2176.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2102021
数据集 | 数据来源 | 样本规模 | 数据维数 | 类簇个数 |
---|---|---|---|---|
Aggregation | [ | 788 | 2 | 7 |
Flame | [ | 240 | 2 | 2 |
Jain | [ | 373 | 2 | 2 |
Pathbased | [ | 300 | 2 | 3 |
Spiral | [ | 312 | 2 | 3 |
R15 | [ | 600 | 2 | 15 |
D31 | [ | 3 100 | 2 | 31 |
S2 | [ | 5 000 | 2 | 15 |
Table 1 Synthetic datasets
数据集 | 数据来源 | 样本规模 | 数据维数 | 类簇个数 |
---|---|---|---|---|
Aggregation | [ | 788 | 2 | 7 |
Flame | [ | 240 | 2 | 2 |
Jain | [ | 373 | 2 | 2 |
Pathbased | [ | 300 | 2 | 3 |
Spiral | [ | 312 | 2 | 3 |
R15 | [ | 600 | 2 | 15 |
D31 | [ | 3 100 | 2 | 31 |
S2 | [ | 5 000 | 2 | 15 |
数据集 | 数据来源 | 样本规模 | 数据维数 | 类簇个数 |
---|---|---|---|---|
Seeds | [ | 210 | 7 | 3 |
Libras | [ | 360 | 90 | 15 |
Iris | [ | 150 | 4 | 3 |
Wine | [ | 178 | 13 | 3 |
Ecoli | [ | 336 | 8 | 8 |
Dermatology | [ | 366 | 33 | 6 |
Glass | [ | 214 | 9 | 6 |
Waveform | [ | 2 310 | 19 | 7 |
Table 2 UCI datasets
数据集 | 数据来源 | 样本规模 | 数据维数 | 类簇个数 |
---|---|---|---|---|
Seeds | [ | 210 | 7 | 3 |
Libras | [ | 360 | 90 | 15 |
Iris | [ | 150 | 4 | 3 |
Wine | [ | 178 | 13 | 3 |
Ecoli | [ | 336 | 8 | 8 |
Dermatology | [ | 366 | 33 | 6 |
Glass | [ | 214 | 9 | 6 |
Waveform | [ | 2 310 | 19 | 7 |
Clustering algorithm | Aggregation | Spiral | ||||||
---|---|---|---|---|---|---|---|---|
AMI | ARI | FMI | Arg- | AMI | ARI | FMI | Arg- | |
WKMM-DPC | 1.000 0 | 1.000 0 | 1.000 0 | 14 | 1.000 0 | 1.000 0 | 1.000 0 | 9 |
FKNN-DPC | 0.990 5 | 0.994 9 | 0.996 0 | 20 | 1.000 0 | 1.000 0 | 1.000 0 | 6 |
DPCSA | 0.953 7 | 0.958 1 | 0.967 3 | — | 1.000 0 | 1.000 0 | 1.000 0 | — |
FNDPC | 0.986 4 | 0.991 3 | 0.993 2 | 0.02 | 1.000 0 | 1.000 0 | 1.000 0 | 0.07 |
DPC | 0.992 2 | 0.995 6 | 0.996 6 | 4.00 | 1.000 0 | 1.000 0 | 1.000 0 | 1.80 |
DBSCAN | 0.968 1 | 0.977 9 | 0.982 7 | 0.04/6 | 1.000 0 | 1.000 0 | 1.000 0 | 0.04/2 |
Clustering algorithm | Flame | R15 | ||||||
AMI | ARI | FMI | Arg- | AMI | ARI | FMI | Arg- | |
WKMM-DPC | 1.000 0 | 1.000 0 | 1.000 0 | 18 | 0.994 2 | 0.992 8 | 0.993 2 | 17 |
FKNN-DPC | 0.926 7 | 0.966 7 | 0.984 5 | 5 | 0.993 8 | 0.992 8 | 0.993 3 | 25 |
DPCSA | 1.000 0 | 1.000 0 | 1.000 0 | — | 0.988 5 | 0.985 7 | 0.986 6 | — |
FNDPC | 1.000 0 | 1.000 0 | 1.000 0 | 0.13 | 0.993 8 | 0.992 8 | 0.993 3 | 0.03 |
DPC | 1.000 0 | 1.000 0 | 1.000 0 | 2.80 | 0.993 8 | 0.992 8 | 0.993 2 | 0.70 |
DBSCAN | 0.866 5 | 0.938 8 | 0.971 2 | 0.09/8 | 0.983 2 | 0.975 8 | 0.979 9 | 0.04/12 |
Clustering algorithm | Jain | D31 | ||||||
AMI | ARI | FMI | Arg- | AMI | ARI | FMI | Arg- | |
WKMM-DPC | 1.000 0 | 1.000 0 | 1.000 0 | 16 | 0.957 1 | 0.915 9 | 0.919 1 | 36 |
FKNN-DPC | 0.709 2 | 0.822 4 | 0.935 9 | 43 | 0.965 4 | 0.952 3 | 0.953 8 | 28 |
DPCSA | 0.216 7 | 0.044 2 | 0.592 4 | — | 0.955 2 | 0.935 3 | 0.937 4 | — |
FNDPC | 0.596 1 | 0.725 7 | 0.905 1 | 0.47 | 0.955 5 | 0.936 4 | 0.938 5 | 0.04 |
DPC | 0.618 3 | 0.714 6 | 0.881 9 | 0.90 | 0.955 4 | 0.936 5 | 0.938 5 | 0.60 |
DBSCAN | 0.928 1 | 0.975 8 | 0.990 6 | 0.08/2 | 0.903 2 | 0.809 5 | 0.816 3 | 0.04/47 |
Clustering algorithm | Pathbased | S2 | ||||||
AMI | ARI | FMI | Arg- | AMI | ARI | FMI | Arg- | |
WKMM-DPC | 0.751 0 | 0.715 0 | 0.811 1 | 18 | 0.944 5 | 0.935 6 | 0.939 9 | 25 |
FKNN-DPC | 0.930 5 | 0.949 9 | 0.966 5 | 9 | 0.918 0 | 0.888 9 | 0.896 3 | 22 |
DPCSA | 0.707 3 | 0.613 3 | 0.751 1 | — | 0.933 3 | 0.915 2 | 0.920 9 | — |
FNDPC | 0.575 1 | 0.506 7 | 0.706 5 | 0.01 | 0.943 1 | 0.935 1 | 0.939 5 | 0.03 |
DPC | 0.521 2 | 0.471 7 | 0.666 4 | 3.80 | 0.943 7 | 0.935 2 | 0.939 5 | 1.50 |
DBSCAN | 0.872 1 | 0.901 1 | 0.934 0 | 0.08/10 | 0.878 1 | 0.751 0 | 0.776 7 | 0.04/30 |
Table 3 Performance of 6 clustering algorithms on 8 synthetic datasets
Clustering algorithm | Aggregation | Spiral | ||||||
---|---|---|---|---|---|---|---|---|
AMI | ARI | FMI | Arg- | AMI | ARI | FMI | Arg- | |
WKMM-DPC | 1.000 0 | 1.000 0 | 1.000 0 | 14 | 1.000 0 | 1.000 0 | 1.000 0 | 9 |
FKNN-DPC | 0.990 5 | 0.994 9 | 0.996 0 | 20 | 1.000 0 | 1.000 0 | 1.000 0 | 6 |
DPCSA | 0.953 7 | 0.958 1 | 0.967 3 | — | 1.000 0 | 1.000 0 | 1.000 0 | — |
FNDPC | 0.986 4 | 0.991 3 | 0.993 2 | 0.02 | 1.000 0 | 1.000 0 | 1.000 0 | 0.07 |
DPC | 0.992 2 | 0.995 6 | 0.996 6 | 4.00 | 1.000 0 | 1.000 0 | 1.000 0 | 1.80 |
DBSCAN | 0.968 1 | 0.977 9 | 0.982 7 | 0.04/6 | 1.000 0 | 1.000 0 | 1.000 0 | 0.04/2 |
Clustering algorithm | Flame | R15 | ||||||
AMI | ARI | FMI | Arg- | AMI | ARI | FMI | Arg- | |
WKMM-DPC | 1.000 0 | 1.000 0 | 1.000 0 | 18 | 0.994 2 | 0.992 8 | 0.993 2 | 17 |
FKNN-DPC | 0.926 7 | 0.966 7 | 0.984 5 | 5 | 0.993 8 | 0.992 8 | 0.993 3 | 25 |
DPCSA | 1.000 0 | 1.000 0 | 1.000 0 | — | 0.988 5 | 0.985 7 | 0.986 6 | — |
FNDPC | 1.000 0 | 1.000 0 | 1.000 0 | 0.13 | 0.993 8 | 0.992 8 | 0.993 3 | 0.03 |
DPC | 1.000 0 | 1.000 0 | 1.000 0 | 2.80 | 0.993 8 | 0.992 8 | 0.993 2 | 0.70 |
DBSCAN | 0.866 5 | 0.938 8 | 0.971 2 | 0.09/8 | 0.983 2 | 0.975 8 | 0.979 9 | 0.04/12 |
Clustering algorithm | Jain | D31 | ||||||
AMI | ARI | FMI | Arg- | AMI | ARI | FMI | Arg- | |
WKMM-DPC | 1.000 0 | 1.000 0 | 1.000 0 | 16 | 0.957 1 | 0.915 9 | 0.919 1 | 36 |
FKNN-DPC | 0.709 2 | 0.822 4 | 0.935 9 | 43 | 0.965 4 | 0.952 3 | 0.953 8 | 28 |
DPCSA | 0.216 7 | 0.044 2 | 0.592 4 | — | 0.955 2 | 0.935 3 | 0.937 4 | — |
FNDPC | 0.596 1 | 0.725 7 | 0.905 1 | 0.47 | 0.955 5 | 0.936 4 | 0.938 5 | 0.04 |
DPC | 0.618 3 | 0.714 6 | 0.881 9 | 0.90 | 0.955 4 | 0.936 5 | 0.938 5 | 0.60 |
DBSCAN | 0.928 1 | 0.975 8 | 0.990 6 | 0.08/2 | 0.903 2 | 0.809 5 | 0.816 3 | 0.04/47 |
Clustering algorithm | Pathbased | S2 | ||||||
AMI | ARI | FMI | Arg- | AMI | ARI | FMI | Arg- | |
WKMM-DPC | 0.751 0 | 0.715 0 | 0.811 1 | 18 | 0.944 5 | 0.935 6 | 0.939 9 | 25 |
FKNN-DPC | 0.930 5 | 0.949 9 | 0.966 5 | 9 | 0.918 0 | 0.888 9 | 0.896 3 | 22 |
DPCSA | 0.707 3 | 0.613 3 | 0.751 1 | — | 0.933 3 | 0.915 2 | 0.920 9 | — |
FNDPC | 0.575 1 | 0.506 7 | 0.706 5 | 0.01 | 0.943 1 | 0.935 1 | 0.939 5 | 0.03 |
DPC | 0.521 2 | 0.471 7 | 0.666 4 | 3.80 | 0.943 7 | 0.935 2 | 0.939 5 | 1.50 |
DBSCAN | 0.872 1 | 0.901 1 | 0.934 0 | 0.08/10 | 0.878 1 | 0.751 0 | 0.776 7 | 0.04/30 |
算法 | 秩均值 | ||
---|---|---|---|
AMI | ARI | FMI | |
WKMM-DPC | 5.13 | 4.56 | 4.50 |
FKNN-DPC | 3.94 | 4.00 | 4.19 |
DPCSA | 2.50 | 2.63 | 2.63 |
FNDPC | 3.38 | 3.56 | 3.63 |
DPC | 3.63 | 3.81 | 3.63 |
DBSCAN | 2.44 | 2.44 | 2.44 |
Table 4 Friedman test value of 3 evaluation indices on synthetic datasets
算法 | 秩均值 | ||
---|---|---|---|
AMI | ARI | FMI | |
WKMM-DPC | 5.13 | 4.56 | 4.50 |
FKNN-DPC | 3.94 | 4.00 | 4.19 |
DPCSA | 2.50 | 2.63 | 2.63 |
FNDPC | 3.38 | 3.56 | 3.63 |
DPC | 3.63 | 3.81 | 3.63 |
DBSCAN | 2.44 | 2.44 | 2.44 |
Clustering algorithm | Seeds | Ecoli | ||||||
---|---|---|---|---|---|---|---|---|
AMI | ARI | FMI | Arg- | AMI | ARI | FMI | Arg- | |
WKMM-DPC | 0.705 4 | 0.730 6 | 0.820 7 | 5 | 0.716 2 | 0.747 9 | 0.824 4 | 25 |
FKNN-DPC | 0.775 7 | 0.802 4 | 0.868 2 | 9 | 0.587 8 | 0.589 4 | 0.702 7 | 2 |
DPCSA | 0.660 9 | 0.687 3 | 0.791 8 | — | 0.440 6 | 0.459 3 | 0.646 7 | — |
FNDPC | 0.713 6 | 0.754 5 | 0.836 1 | 0.07 | 0.483 3 | 0.561 8 | 0.717 8 | 0.35 |
DPC | 0.729 8 | 0.767 0 | 0.844 4 | 0.70 | 0.497 8 | 0.446 5 | 0.577 5 | 0.40 |
DBSCAN | 0.591 2 | 0.529 1 | 0.671 1 | 0.24/16 | 0.516 9 | 0.536 7 | 0.669 2 | 0.20/22 |
Clustering algorithm | Libras | Dermatology | ||||||
AMI | ARI | FMI | Arg- | AMI | ARI | FMI | Arg- | |
WKMM-DPC | 0.676 7 | 0.411 4 | 0.458 6 | 8 | 0.902 3 | 0.841 6 | 0.880 8 | 61 |
FKNN-DPC | 0.555 4 | 0.345 9 | 0.404 4 | 10 | 0.806 6 | 0.836 1 | 0.870 9 | 35 |
DPCSA | 0.538 8 | 0.309 5 | 0.379 1 | — | 0.745 1 | 0.606 2 | 0.689 6 | — |
FNDPC | 0.549 4 | 0.329 0 | 0.386 9 | 0.17 | 0.789 8 | 0.799 5 | 0.841 8 | 0.17 |
DPC | 0.535 8 | 0.319 3 | 0.371 7 | 0.30 | 0.608 6 | 0.611 0 | 0.705 6 | 1.50 |
DBSCAN | 0.591 2 | 0.196 5 | 0.257 0 | 0.90/2 | 0.625 0 | 0.415 2 | 0.538 5 | 0.99/3 |
Clustering algorithm | Iris | Glass | ||||||
AMI | ARI | FMI | Arg- | AMI | ARI | FMI | Arg- | |
WKMM-DPC | 0.883 1 | 0.903 8 | 0.935 5 | 11 | 0.699 3 | 0.668 9 | 0.758 3 | 12 |
FKNN-DPC | 0.883 1 | 0.903 8 | 0.935 5 | 22 | 0.489 6 | 0.510 6 | 0.654 1 | 9 |
DPCSA | 0.883 1 | 0.903 8 | 0.935 5 | — | 0.237 5 | 0.198 6 | 0.545 6 | — |
FNDPC | 0.883 1 | 0.903 8 | 0.935 5 | 0.11 | 0.563 5 | 0.576 4 | 0.687 7 | 0.09 |
DPC | 0.724 7 | 0.703 7 | 0.803 2 | 0.20 | 0.556 5 | 0.533 5 | 0.655 9 | 0.90 |
DBSCAN | 0.640 1 | 0.612 0 | 0.729 1 | 0.12/5 | 0.504 0 | 0.110 6 | 0.278 4 | 0.1/1 |
Clustering algorithm | Wine | Waveform | ||||||
AMI | ARI | FMI | Arg- | AMI | ARI | FMI | Arg- | |
WKMM-DPC | 0.772 9 | 0.771 3 | 0.848 0 | 14 | 0.299 1 | 0.282 7 | 0.582 5 | 8 |
FKNN-DPC | 0.848 1 | 0.883 9 | 0.922 9 | 8 | 0.323 9 | 0.267 1 | 0.524 4 | 2 |
DPCSA | 0.748 0 | 0.741 4 | 0.828 3 | — | 0.251 0 | 0.223 6 | 0.532 7 | — |
FNDPC | 0.789 8 | 0.802 5 | 0.868 6 | 0.26 | 0.329 3 | 0.283 0 | 0.544 2 | 0.34 |
DPC | 0.706 5 | 0.672 4 | 0.783 5 | 2.00 | 0.326 1 | 0.269 8 | 0.529 2 | 0.10 |
DBSCAN | 0.590 5 | 0.529 2 | 0.712 1 | 0.50/21 | 0.104 9 | 0.009 4 | 0.481 1 | 0.38/5 |
Table 5 Performance of 6 clustering algorithms on 8 UCI datasets
Clustering algorithm | Seeds | Ecoli | ||||||
---|---|---|---|---|---|---|---|---|
AMI | ARI | FMI | Arg- | AMI | ARI | FMI | Arg- | |
WKMM-DPC | 0.705 4 | 0.730 6 | 0.820 7 | 5 | 0.716 2 | 0.747 9 | 0.824 4 | 25 |
FKNN-DPC | 0.775 7 | 0.802 4 | 0.868 2 | 9 | 0.587 8 | 0.589 4 | 0.702 7 | 2 |
DPCSA | 0.660 9 | 0.687 3 | 0.791 8 | — | 0.440 6 | 0.459 3 | 0.646 7 | — |
FNDPC | 0.713 6 | 0.754 5 | 0.836 1 | 0.07 | 0.483 3 | 0.561 8 | 0.717 8 | 0.35 |
DPC | 0.729 8 | 0.767 0 | 0.844 4 | 0.70 | 0.497 8 | 0.446 5 | 0.577 5 | 0.40 |
DBSCAN | 0.591 2 | 0.529 1 | 0.671 1 | 0.24/16 | 0.516 9 | 0.536 7 | 0.669 2 | 0.20/22 |
Clustering algorithm | Libras | Dermatology | ||||||
AMI | ARI | FMI | Arg- | AMI | ARI | FMI | Arg- | |
WKMM-DPC | 0.676 7 | 0.411 4 | 0.458 6 | 8 | 0.902 3 | 0.841 6 | 0.880 8 | 61 |
FKNN-DPC | 0.555 4 | 0.345 9 | 0.404 4 | 10 | 0.806 6 | 0.836 1 | 0.870 9 | 35 |
DPCSA | 0.538 8 | 0.309 5 | 0.379 1 | — | 0.745 1 | 0.606 2 | 0.689 6 | — |
FNDPC | 0.549 4 | 0.329 0 | 0.386 9 | 0.17 | 0.789 8 | 0.799 5 | 0.841 8 | 0.17 |
DPC | 0.535 8 | 0.319 3 | 0.371 7 | 0.30 | 0.608 6 | 0.611 0 | 0.705 6 | 1.50 |
DBSCAN | 0.591 2 | 0.196 5 | 0.257 0 | 0.90/2 | 0.625 0 | 0.415 2 | 0.538 5 | 0.99/3 |
Clustering algorithm | Iris | Glass | ||||||
AMI | ARI | FMI | Arg- | AMI | ARI | FMI | Arg- | |
WKMM-DPC | 0.883 1 | 0.903 8 | 0.935 5 | 11 | 0.699 3 | 0.668 9 | 0.758 3 | 12 |
FKNN-DPC | 0.883 1 | 0.903 8 | 0.935 5 | 22 | 0.489 6 | 0.510 6 | 0.654 1 | 9 |
DPCSA | 0.883 1 | 0.903 8 | 0.935 5 | — | 0.237 5 | 0.198 6 | 0.545 6 | — |
FNDPC | 0.883 1 | 0.903 8 | 0.935 5 | 0.11 | 0.563 5 | 0.576 4 | 0.687 7 | 0.09 |
DPC | 0.724 7 | 0.703 7 | 0.803 2 | 0.20 | 0.556 5 | 0.533 5 | 0.655 9 | 0.90 |
DBSCAN | 0.640 1 | 0.612 0 | 0.729 1 | 0.12/5 | 0.504 0 | 0.110 6 | 0.278 4 | 0.1/1 |
Clustering algorithm | Wine | Waveform | ||||||
AMI | ARI | FMI | Arg- | AMI | ARI | FMI | Arg- | |
WKMM-DPC | 0.772 9 | 0.771 3 | 0.848 0 | 14 | 0.299 1 | 0.282 7 | 0.582 5 | 8 |
FKNN-DPC | 0.848 1 | 0.883 9 | 0.922 9 | 8 | 0.323 9 | 0.267 1 | 0.524 4 | 2 |
DPCSA | 0.748 0 | 0.741 4 | 0.828 3 | — | 0.251 0 | 0.223 6 | 0.532 7 | — |
FNDPC | 0.789 8 | 0.802 5 | 0.868 6 | 0.26 | 0.329 3 | 0.283 0 | 0.544 2 | 0.34 |
DPC | 0.706 5 | 0.672 4 | 0.783 5 | 2.00 | 0.326 1 | 0.269 8 | 0.529 2 | 0.10 |
DBSCAN | 0.590 5 | 0.529 2 | 0.712 1 | 0.50/21 | 0.104 9 | 0.009 4 | 0.481 1 | 0.38/5 |
算法 | 秩均值 | ||
---|---|---|---|
AMI | ARI | FMI | |
WKMM-DPC | 4.81 | 5.06 | 5.19 |
FKNN-DPC | 4.56 | 4.69 | 4.44 |
DPCSA | 2.31 | 2.44 | 2.81 |
FNDPC | 4.19 | 4.56 | 4.56 |
DPC | 2.88 | 3.00 | 2.75 |
DBSCAN | 2.25 | 1.25 | 1.25 |
Table 6 Friedman test value of 3 evaluation indices on UCI datasets
算法 | 秩均值 | ||
---|---|---|---|
AMI | ARI | FMI | |
WKMM-DPC | 4.81 | 5.06 | 5.19 |
FKNN-DPC | 4.56 | 4.69 | 4.44 |
DPCSA | 2.31 | 2.44 | 2.81 |
FNDPC | 4.19 | 4.56 | 4.56 |
DPC | 2.88 | 3.00 | 2.75 |
DBSCAN | 2.25 | 1.25 | 1.25 |
[1] |
SRIVASTAVA A N. Data mining: concepts, models, methods, and algorithms[J]. Journal of Computing and Information Science and Engineering, 2005, 5(4): 394-395.
DOI URL |
[2] |
JAIN A K. Data clustering: 50 years beyond K-means[J]. Pattern Recognition Letters, 2010, 31(8): 651-666.
DOI URL |
[3] |
ZHANG T, RAMAKRISHNAN R, LIVNY M. BIRCH: a new data clustering algorithm and its applications[J]. Data Mining and Knowledge Discovery, 1997, 1(2): 141-182.
DOI URL |
[4] | ESTER M, KRIEGEL H P, SANDER J, et al. A density-based algorithm for discovering clusters in large spatial databases with noise[C]// Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining, Portland, 1996. Menlo Park: AAAI, 1996: 226-231. |
[5] | WEI W, YANG J, MUNTZ R R. STING: a statistical informa-tion grid approach to spatial data mining[C]// Proceedings of the 23rd International Conference on Very Large Data Bases, Los Angeles, Aug 25-29, 1997. San Francisco: Morgan Kaufmann, 1997: 186-195. |
[6] |
XU X, DING S, DU M, et al. DPCG: an efficient density peaks clustering algorithm based on grid[J]. International Journal of Machine Learning and Cybernetics, 2018, 9(5): 743-754.
DOI URL |
[7] |
RODRIGUEZ A, LAIO A. Clustering by fast search and find of density peaks[J]. Science, 2014, 344(6191): 1492-1496.
DOI URL |
[8] |
高诗莹, 周晓锋, 李帅. 基于密度比例的密度峰值聚类算法[J]. 计算机工程与应用, 2017, 53(16): 10-17.
DOI |
GAO S Y, ZHOU X F, LI S. Clustering by fast search and find of density peaks based on density-raito[J]. Computer Engineering and Applications, 2017, 53(16): 10-17. | |
[9] |
ZHAO J, TANG J J, SHI A Y, et al. Improved density peaks clustering based on firefly algorithm[J]. International Journal of Bio-Inspired Computation, 2020, 15(1): 24-42.
DOI URL |
[10] |
SUN L, LIU R N, XU J C, et al. An adaptive density peaks clustering method with fisher linear discriminant[J]. IEEE Access, 2019, 7: 72936-72955.
DOI URL |
[11] | 纪霞, 姚晟, 赵鹏. 相对邻域与剪枝策略优化的密度峰值聚类算法[J]. 自动化学报, 2020, 46(3): 562-575. |
JI X, YAO S, ZHAO P. Relative neighborhood and pruning strategy optimized density peaks clustering algorithm[J]. Acta Automatica Sinica, 2020, 46(3): 562-575. | |
[12] |
薛小娜, 高淑萍, 彭弘铭, 等. 结合K近邻的改进密度峰值聚类算法[J]. 计算机工程与应用, 2018, 54(7): 36-43.
DOI |
XUE X N, GAO S P, PENG H M, et al. Improved density peaks clustering algorithm combining K-nearest neighbors[J]. Computer Engineering and Applications, 2018, 54(7): 36-43. | |
[13] |
DU M J, DING S F, JIA H J. Study on density peaks clustering based on k-nearest neighbors and principal component analysis[J]. Knowledge-Based Systems, 2016, 99: 135-145.
DOI URL |
[14] |
XIE J Y, GAO H C, XIE W X, et al. Robust clustering by detecting density peaks and assigning points based on fuzzy weighted K-nearest neighbors[J]. Information Sciences, 2016, 354: 19-40.
DOI URL |
[15] |
贾露, 张德生, 吕端端. 物理学优化的密度峰值聚类算法[J]. 计算机工程与应用, 2020, 56(13): 47-53.
DOI |
JIA L, ZHANG D S, LV D D. Optimized density peak clustering algorithm in physics[J]. Computer Engineering and Applications, 2020, 56(13): 47-53.
DOI |
|
[16] |
王芙银, 张德生, 张晓. 结合鲸鱼优化算法的自适应密度峰值聚类算法[J]. 计算机工程与应用, 2021, 57(3): 94-102.
DOI |
WANG F Y, ZHANG D S, ZHANG X. Adaptive density peaks clustering algorithm combining with whale optimization algorithm[J]. Computer Engineering and Applications, 2021, 57(3): 94-102. | |
[17] | 赵嘉, 姚占峰, 吕莉, 等. 基于相互邻近度的密度峰值聚类算法[J]. 控制与决策, 2021, 36(3): 543-552. |
ZHAO J, YAO Z F, LV L, et al. Density peaks clustering based on mutual neighbor degree[J]. Control and Decision, 2021, 36(3): 543-552. | |
[18] | ZHAO J, TANG J J, FAN T H, et al. Density peaks clustering based on circular partition and grid similarity[J]. Concurrency and Computation: Practice and Experience, 2020, 32(7): e5567. |
[19] |
CHEN H, YANG B, WANG G, et al. A novel bankruptcy prediction model based on an adaptive fuzzy-nearest neighbor method[J]. Knowledge-Based Systems, 2011, 24(8): 1348-1359.
DOI URL |
[20] |
LV L, WANG J Y, WU R X, et al. Density peaks clustering based on geodetic distance and dynamic neighborhood[J]. International Journal of Bio-Inspired Computation, 2021, 17(1): 24-33.
DOI URL |
[21] |
YU D H, LIU G J, GUO M Z, et al. Density peaks clustering based on weighted local density sequence and nearest neighbor assignment[J]. IEEE Access, 2019, 7: 34301-34317.
DOI URL |
[22] |
DU M J, DING S F, XUE Y. A robust density peaks clustering algorithm using fuzzy neighborhood[J]. International Journal of Machine Learning and Cybernetics, 2018, 9(7): 1131-1140.
DOI URL |
[23] | DIAS D B, MADEO R C B, ROCHA T, et al. Hand movement recognition for Brazilian sign language: a study using distance-based neural networks[C]// Proceedings of the 2009 International Joint Conference on Neural Networks, Atlanta, Jun 14-19,2009. Washington: IEEE Computer Society, 2009: 697-704. |
[24] |
FU L M, MEDICO E. FLAME, a novel fuzzy clustering method for the analysis of DNA microarray data[J]. BMC Bioinformatics, 2007, 8(1): 3.
DOI URL |
[25] | JAIN A K, LAW M H C. Data clustering: user's dilemma[C]// LNCS 3776: Proceedings of the 1st International Conference on Pattern Recognition and Machine Intelligence, Koikata,Dec 20-22, 2005. Berlin, Heidelberg: Springer, 2005: 1-10. |
[26] |
CHANG H, YEUNG D Y. Robust path-based spectral clustering[J]. Pattern Recognition, 2008, 41(1): 191-203.
DOI URL |
[27] |
VEENMAN C J, REINDERS M J T, BACKER E. A maximum variance cluster algorithm[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(9): 1273-1280.
DOI URL |
[28] |
FRNTI P, VIRMAJOKI O. Iterative shrinking method for clustering problems[J]. Pattern Recognition, 2006, 39(5): 761-775.
DOI URL |
[29] | CHARYTANOWICZ M, NIEWCZAS J, KULCZYCKI P, et al. Complete gradient clustering algorithm for features analysis of X-ray images[J]. Information Technologies in Biomedicine, 2010, 69: 15-24. |
[30] | BLAKE C L, MERZ C J. UCI repository of machine learning database[EB/OL]. [2020-12-28]. http://archive.ics.uci.edu/ml/index.html. |
[31] |
WU C R, JIA L, YAO J, et al. Efficient clustering method based on density peaks with symmetric neighborhood relationship[J]. IEEE Access, 2019, 7: 60684-60696.
DOI URL |
[32] | BREIMAN L, FRIEDMAN J H, OLSHENR A, et al. Classificationand regression trees(CART)[J]. Biometrics, 1984, 40(3): 358. |
[1] | HE Yunbin, LIU Wanxu, WAN Jing. Optimized Number of Reverse Neighbor Clustering Algorithm by Voronoi Diagram in Obstacle Space [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(9): 2041-2049. |
[2] | XU Jia, MO Xiaokun, YU Ge, LYU Pin, WEI Tingting. SQL-Detector: SQL Plagiarism Detection Technique Based on Coding Features [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(9): 2030-2040. |
[3] | ZHAO Liheng, WANG Jian, CHEN Hongjun. Density-Peak Clustering Algorithm on Decentralized and Weighted Clusters Merging [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(8): 1910-1922. |
[4] | ZHANG Xiangping, LIU Jianxun, XIAO Qiaoxiang, CAO Buqing. Multidimensional Information-Based Web Service Representation Method [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(7): 1561-1569. |
[5] | CHEN Junfen, ZHANG Ming, ZHAO Jiacheng, XIE Bojun, LI Yan. Deep Clustering Algorithm Based on Denoising and Self-Attention [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(9): 1717-1727. |
[6] | WANG Dagang, DING Shifei, ZHONG Jin. Research of Density Peaks Clustering Algorithm Based on Second-Order k Neighbors [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(8): 1490-1500. |
[7] | SHEN Xueli, QIN Xinyu. KNN Algorithm of Enhanced Clustering Based on Density Canopy and Deep Feature [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(7): 1289-1301. |
[8] | FAN Ruidong, HOU Chenping. Robust Auto-weighted Multi-view Subspace Clustering [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(6): 1062-1073. |
[9] | BAI Exiang, LUO Ke, LUO Xiao. Peak Density Clustering Algorithm Combining Natural and Shared Nearest Neighbor [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(5): 931-940. |
[10] | ZHANG Nini, GE Hongwei. Stable K Multiple-Means Clustering Algorithm [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(5): 941-948. |
[11] | MA Ruiqiang, SONG Baoyan, DING Linlin, WANG Junlu. Dynamic Matrix Clustering Method for Time Series Events [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(3): 468-477. |
[12] | XUE Hongyan, QIAN Xuezhong, ZHOU Shibing. Ensemble Clustering Algorithm Based on Weighted Super Cluster [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(12): 2362-2373. |
[13] | ZHANG Pei, ZHU En, CAI Zhiping. One-Stage Partition-Fusion Multi-view Subspace Clustering Algorithm [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(12): 2413-2420. |
[14] | YAO Xiaohong, HUANG Hengjun. Semi-supervised Clustering Method for Non-negative Functional Data [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(12): 2438-2448. |
[15] | LIU Juan, WAN Jing. Optimized Density Peak Clustering Algorithm by Natural Reverse Nearest Neighbor [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(10): 1888-1899. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/