Journal of Frontiers of Computer Science and Technology ›› 2022, Vol. 16 ›› Issue (9): 2151-2162.DOI: 10.3778/j.issn.1673-9418.2102070
• Theory and Algorithm • Previous Articles Next Articles
LUO Yixuan1,2, LIU Jianhua1,2,+(), HU Renyuan1,2, ZHANG Dongyang1,2, BU Guannan1,2
Received:
2021-03-01
Revised:
2021-05-08
Online:
2022-09-01
Published:
2021-05-18
About author:
LUO Yixuan, born in 1996, M.S. candidate,member of CCF. His research interests include computational intelligence and reinforcement learning.Supported by:
罗逸轩1,2, 刘建华1,2,+(), 胡任远1,2, 张冬阳1,2, 卜冠南1,2
通讯作者:
+ E-mail: jhliu@fjnu.edu.cn作者简介:
罗逸轩(1996—),男,福建福州人,硕士研究生,CCF会员,主要研究方向为智能计算、强化学习。基金资助:
CLC Number:
LUO Yixuan, LIU Jianhua, HU Renyuan, ZHANG Dongyang, BU Guannan. Particle Swarm Optimization Combined with Q-learning of Experience Sharing Strategy[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(9): 2151-2162.
罗逸轩, 刘建华, 胡任远, 张冬阳, 卜冠南. 融合经验共享Q学习的粒子群优化算法[J]. 计算机科学与探索, 2022, 16(9): 2151-2162.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2102070
动作名称 | 动作参数 | 收敛速度 | ||
---|---|---|---|---|
w | c1 | c2 | ||
全局探索 | 大 | 大 | 小 | 慢 |
综合搜索 | 中 | 中 | 中 | 中 |
局部开发 | 小 | 小 | 大 | 快 |
Table 1 Action
动作名称 | 动作参数 | 收敛速度 | ||
---|---|---|---|---|
w | c1 | c2 | ||
全局探索 | 大 | 大 | 小 | 慢 |
综合搜索 | 中 | 中 | 中 | 中 |
局部开发 | 小 | 小 | 大 | 快 |
编号 | 函数名 | 最优解 |
---|---|---|
f1 | Sphere function | -1 400 |
f2 | Rotated high conditioned elliptic function | -1 300 |
f3 | Rotated bent cigar function | -1 200 |
f4 | Rotated discus function | -1 100 |
f5 | Different powers function | -1 000 |
f6 | Rotated Rosenbrock's function | -900 |
f7 | Rotated Schaffer's F7 function | -800 |
f8 | Rotated Ackley's function | -700 |
f9 | Rotated Weierstrass function | -600 |
f10 | Rotated Griewank's function | -500 |
f11 | Rastrigin's function | -400 |
f12 | Rotated Rastrigin's function | -300 |
f13 | Non-continuous rotated Rastrigin's function | -200 |
f14 | Schwefel's function | -100 |
f15 | Rotated Schwefel's function | 100 |
f16 | Rotated Katsuura function | 200 |
f17 | Lunacek Bi_Rastrigin function | 300 |
f18 | Rotated Lunacek Bi_Rastrigin function | 400 |
f19 | Expanded Griewank's plus Rosenbrock's function | 500 |
f20 | Expanded Scaffer's F6 function | 600 |
f21 | Composition function 1 (n=5, Rotated) | 700 |
f22 | Composition function 2 (n=3, Unrotated) | 800 |
f23 | Composition function 3 (n=3, Rotated) | 900 |
f24 | Composition function 4 (n=3, Rotated) | 1 000 |
f25 | Composition function 5 (n=3, Rotated) | 1 100 |
f26 | Composition function 6 (n=5, Rotated) | 1 200 |
f27 | Composition function 7 (n=5, Rotated) | 1 300 |
f28 | Composition function 8 (n=5, Rotated) | 1 400 |
Table 2 CEC2013 benchmark functions
编号 | 函数名 | 最优解 |
---|---|---|
f1 | Sphere function | -1 400 |
f2 | Rotated high conditioned elliptic function | -1 300 |
f3 | Rotated bent cigar function | -1 200 |
f4 | Rotated discus function | -1 100 |
f5 | Different powers function | -1 000 |
f6 | Rotated Rosenbrock's function | -900 |
f7 | Rotated Schaffer's F7 function | -800 |
f8 | Rotated Ackley's function | -700 |
f9 | Rotated Weierstrass function | -600 |
f10 | Rotated Griewank's function | -500 |
f11 | Rastrigin's function | -400 |
f12 | Rotated Rastrigin's function | -300 |
f13 | Non-continuous rotated Rastrigin's function | -200 |
f14 | Schwefel's function | -100 |
f15 | Rotated Schwefel's function | 100 |
f16 | Rotated Katsuura function | 200 |
f17 | Lunacek Bi_Rastrigin function | 300 |
f18 | Rotated Lunacek Bi_Rastrigin function | 400 |
f19 | Expanded Griewank's plus Rosenbrock's function | 500 |
f20 | Expanded Scaffer's F6 function | 600 |
f21 | Composition function 1 (n=5, Rotated) | 700 |
f22 | Composition function 2 (n=3, Unrotated) | 800 |
f23 | Composition function 3 (n=3, Rotated) | 900 |
f24 | Composition function 4 (n=3, Rotated) | 1 000 |
f25 | Composition function 5 (n=3, Rotated) | 1 100 |
f26 | Composition function 6 (n=5, Rotated) | 1 200 |
f27 | Composition function 7 (n=5, Rotated) | 1 300 |
f28 | Composition function 8 (n=5, Rotated) | 1 400 |
决策空间状态Ⅰ(SⅠ) | 决策空间状态Ⅱ(SⅡ) | 决策空间状态Ⅲ(SⅢ) |
---|---|---|
0<d<0.125∆R | 0<d<0.25∆R | 0<d<(0.25→0.10)∆R |
0.125∆R<d<0.250∆R | 0.25∆R<d<0.50∆R | (0.25→0.10)∆R<d<(0.50→0.20)∆R |
0.250∆R<d<0.500∆R | 0.50∆R<d<0.75∆R | (0.50→0.20)∆R<d<(0.75→0.30)∆R |
0.500∆R <d | 0.75∆R<d | (0.75→0.30)∆R<d |
Table 3 Setting of decision space state parameters
决策空间状态Ⅰ(SⅠ) | 决策空间状态Ⅱ(SⅡ) | 决策空间状态Ⅲ(SⅢ) |
---|---|---|
0<d<0.125∆R | 0<d<0.25∆R | 0<d<(0.25→0.10)∆R |
0.125∆R<d<0.250∆R | 0.25∆R<d<0.50∆R | (0.25→0.10)∆R<d<(0.50→0.20)∆R |
0.250∆R<d<0.500∆R | 0.50∆R<d<0.75∆R | (0.50→0.20)∆R<d<(0.75→0.30)∆R |
0.500∆R <d | 0.75∆R<d | (0.75→0.30)∆R<d |
动作名称 | 动作参数Ⅰ(AⅠ) | 动作参数Ⅱ(AⅡ) | 动作参数Ⅲ(AⅢ) | ||||||
---|---|---|---|---|---|---|---|---|---|
c1 | c2 | w | c1 | c2 | w | c1 | c2 | w | |
全局探索 | 2.5 | 0.5 | 0.68 | 2.5 | 0.5 | 0.9~0.4 | 2.043 4 | 0.948 7 | 0.729 8 |
综合搜索 | 1.5 | 1.5 | 0.68 | 1.5 | 1.5 | 0.9~0.4 | 1.496 0 | 1.496 0 | 0.729 8 |
局部开发 | 0.5 | 2.5 | 0.68 | 0.5 | 2.5 | 0.9~0.4 | 0.948 7 | 2.043 4 | 0.729 8 |
Table 4 Setting of action parameters
动作名称 | 动作参数Ⅰ(AⅠ) | 动作参数Ⅱ(AⅡ) | 动作参数Ⅲ(AⅢ) | ||||||
---|---|---|---|---|---|---|---|---|---|
c1 | c2 | w | c1 | c2 | w | c1 | c2 | w | |
全局探索 | 2.5 | 0.5 | 0.68 | 2.5 | 0.5 | 0.9~0.4 | 2.043 4 | 0.948 7 | 0.729 8 |
综合搜索 | 1.5 | 1.5 | 0.68 | 1.5 | 1.5 | 0.9~0.4 | 1.496 0 | 1.496 0 | 0.729 8 |
局部开发 | 0.5 | 2.5 | 0.68 | 0.5 | 2.5 | 0.9~0.4 | 0.948 7 | 2.043 4 | 0.729 8 |
水平 | 因素 | ||
---|---|---|---|
目标状态空间 | 动作参数 | 奖励函数 | |
1 | SⅠ | AⅠ | RⅠ |
2 | SⅡ | AⅡ | RⅡ |
3 | SⅢ | AⅢ | RⅢ |
Table 6 Factors and levels of parameters
水平 | 因素 | ||
---|---|---|---|
目标状态空间 | 动作参数 | 奖励函数 | |
1 | SⅠ | AⅠ | RⅠ |
2 | SⅡ | AⅡ | RⅡ |
3 | SⅢ | AⅢ | RⅢ |
实验号 | 因素1 | 因素2 | 因素3 | rank |
---|---|---|---|---|
1 | 1 | 1 | 1 | 5.21 |
2 | 1 | 2 | 2 | 2.25 |
3 | 1 | 3 | 3 | 6.86 |
4 | 2 | 1 | 2 | 6.14 |
5 | 2 | 2 | 3 | 2.14 |
6 | 2 | 3 | 1 | 6.36 |
7 | 3 | 1 | 3 | 7.29 |
8 | 3 | 2 | 1 | 2.07 |
9 | 3 | 3 | 2 | 6.68 |
Table 7 Orthogonal experiment and results
实验号 | 因素1 | 因素2 | 因素3 | rank |
---|---|---|---|---|
1 | 1 | 1 | 1 | 5.21 |
2 | 1 | 2 | 2 | 2.25 |
3 | 1 | 3 | 3 | 6.86 |
4 | 2 | 1 | 2 | 6.14 |
5 | 2 | 2 | 3 | 2.14 |
6 | 2 | 3 | 1 | 6.36 |
7 | 3 | 1 | 3 | 7.29 |
8 | 3 | 2 | 1 | 2.07 |
9 | 3 | 3 | 2 | 6.68 |
结果 | S | A | R |
---|---|---|---|
k1 | 4.773 3 | 6.213 3 | 4.546 7 |
k2 | 4.880 0 | 2.153 3 | 5.023 3 |
k3 | 5.346 7 | 6.633 3 | 5.430 0 |
极差R | 0.573 3 | 4.480 0 | 0.883 3 |
优水平 | SⅠ | AⅡ | RⅠ |
优组合 | SⅠAⅡRⅠ |
Table 8 Range analysis
结果 | S | A | R |
---|---|---|---|
k1 | 4.773 3 | 6.213 3 | 4.546 7 |
k2 | 4.880 0 | 2.153 3 | 5.023 3 |
k3 | 5.346 7 | 6.633 3 | 5.430 0 |
极差R | 0.573 3 | 4.480 0 | 0.883 3 |
优水平 | SⅠ | AⅡ | RⅠ |
优组合 | SⅠAⅡRⅠ |
源 | Ⅲ类平方和 | df | 均方 | F | sig. |
---|---|---|---|---|---|
修正模型 | 38.461a | 6 | 6.410 | 21.905 | 0.044 |
截距 | 225.000 | 1 | 225.000 | 768.880 | 0.001 |
S | 0.558 | 2 | 0.279 | 0.953 | 0.512 |
A | 36.730 | 2 | 18.365 | 62.758 | 0.016 |
R | 1.173 | 2 | 0.586 | 2.004 | 0.333 |
误差 | 0.585 | 2 | 0.293 | ||
总计 | 264.046 | 9 | |||
修正总计 | 39.046 | 8 |
Table 9 Test of intersubjective effect (rank)
源 | Ⅲ类平方和 | df | 均方 | F | sig. |
---|---|---|---|---|---|
修正模型 | 38.461a | 6 | 6.410 | 21.905 | 0.044 |
截距 | 225.000 | 1 | 225.000 | 768.880 | 0.001 |
S | 0.558 | 2 | 0.279 | 0.953 | 0.512 |
A | 36.730 | 2 | 18.365 | 62.758 | 0.016 |
R | 1.173 | 2 | 0.586 | 2.004 | 0.333 |
误差 | 0.585 | 2 | 0.293 | ||
总计 | 264.046 | 9 | |||
修正总计 | 39.046 | 8 |
决策空间状态 | 动作参数 | 奖励函数 | ||
---|---|---|---|---|
c1 | c2 | w | ||
0<d<0.125∆R | 2.5 | 0.5 | 0.9~0.4 | |
0.125∆R<d<0.250∆R | 1.5 | 1.5 | 0.9~0.4 | |
0.250∆R<d<0.500∆R | 0.5 | 2.5 | 0.9~0.4 | |
0.500∆R<d |
Table 10 Parameters of QLPSOES
决策空间状态 | 动作参数 | 奖励函数 | ||
---|---|---|---|---|
c1 | c2 | w | ||
0<d<0.125∆R | 2.5 | 0.5 | 0.9~0.4 | |
0.125∆R<d<0.250∆R | 1.5 | 1.5 | 0.9~0.4 | |
0.250∆R<d<0.500∆R | 0.5 | 2.5 | 0.9~0.4 | |
0.500∆R<d |
种群数N | 维度D | 迭代次数Miter | 实验次数 |
---|---|---|---|
30 | 30 | 150 000 | 51 |
Table 11 Parameter setting for experiment
种群数N | 维度D | 迭代次数Miter | 实验次数 |
---|---|---|---|
30 | 30 | 150 000 | 51 |
函数 | QLPSOES | QLPSO-1D | QLPSO-2D | QLSOPSO | HPSO | HCPSO |
---|---|---|---|---|---|---|
f1 | 9.42E-04 | 2.22E-13 | 2.18E-13 | 9.01E+01 | 2.52E-02 | 1.62E-01 |
f2 | 1.16E+07 | 1.36E+07 | 1.16E+07 | 1.79E+07 | 3.89E+06 | 1.13E+07 |
f3 | 3.61E+08 | 5.67E+07 | 5.40E+07 | 7.37E+08 | 4.60E+08 | 3.88E+08 |
f4 | 2.44E+02 | 7.51E+03 | 6.37E+03 | 1.97E+03 | 5.59E+02 | 1.15E+02 |
f5 | 1.38E-02 | 1.56E-13 | 1.32E-13 | 1.54E+02 | 7.46E-02 | 2.27E-01 |
f6 | 1.03E+02 | 8.96E+01 | 8.35E+01 | 1.32E+02 | 6.40E+01 | 9.96E+01 |
f7 | 4.43E+01 | 3.33E+01 | 3.27E+01 | 3.51E+01 | 7.17E+01 | 4.21E+01 |
f8 | 2.08E+01 | 2.10E+01 | 2.10E+01 | 2.08E+01 | 2.08E+01 | 2.08E+01 |
f9 | 2.22E+01 | 2.35E+01 | 2.20E+01 | 2.48E+01 | 2.62E+01 | 2.24E+01 |
f10 | 6.24E-01 | 1.52E-01 | 1.28E-01 | 5.46E+01 | 1.75E+00 | 1.91E+00 |
f11 | 4.20E+01 | 4.38E+01 | 4.44E+01 | 5.26E+01 | 6.48E+01 | 8.46E+01 |
f12 | 8.40E+01 | 6.58E+01 | 5.50E+01 | 9.04E+01 | 8.81E+01 | 8.63E+01 |
f13 | 1.33E+02 | 1.27E+02 | 1.30E+02 | 1.41E+02 | 1.67E+02 | 1.45E+02 |
f14 | 1.18E+03 | 1.82E+03 | 1.84E+03 | 3.05E+03 | 1.82E+03 | 2.34E+03 |
f15 | 3.85E+03 | 6.95E+03 | 5.83E+03 | 4.54E+03 | 3.66E+03 | 5.16E+03 |
f16 | 1.15E+00 | 2.58E+00 | 2.54E+00 | 1.41E+00 | 1.31E+00 | 1.94E+00 |
f17 | 1.03E+02 | 8.37E+01 | 8.66E+01 | 1.67E+02 | 1.29E+02 | 1.86E+02 |
f18 | 1.27E+02 | 2.08E+02 | 1.73E+02 | 1.53E+02 | 1.34E+02 | 1.90E+02 |
f19 | 7.14E+00 | 4.11E+00 | 4.08E+00 | 1.06E+01 | 9.79E+00 | 1.41E+01 |
f20 | 1.42E+01 | 1.19E+01 | 1.16E+01 | 1.40E+01 | 1.13E+01 | 1.12E+01 |
f21 | 2.90E+02 | 2.92E+02 | 3.10E+02 | 3.68E+02 | 3.43E+02 | 3.07E+02 |
f22 | 1.67E+03 | 1.98E+03 | 1.89E+03 | 3.32E+03 | 2.07E+03 | 2.48E+03 |
f23 | 3.93E+03 | 6.27E+03 | 5.74E+03 | 4.64E+03 | 3.92E+03 | 5.49E+03 |
f24 | 2.67E+02 | 2.62E+02 | 2.63E+02 | 2.72E+02 | 2.77E+02 | 2.73E+02 |
f25 | 2.85E+02 | 2.86E+02 | 2.85E+02 | 2.89E+02 | 2.87E+02 | 2.91E+02 |
f26 | 2.67E+02 | 3.01E+02 | 2.95E+02 | 2.45E+02 | 2.26E+02 | 2.00E+02 |
f27 | 8.98E+02 | 8.83E+02 | 9.03E+02 | 9.54E+02 | 9.98E+02 | 9.30E+02 |
f28 | 3.14E+02 | 3.88E+02 | 3.23E+02 | 8.72E+02 | 4.41E+02 | 4.32E+02 |
Table 12 Experimental results of function test
函数 | QLPSOES | QLPSO-1D | QLPSO-2D | QLSOPSO | HPSO | HCPSO |
---|---|---|---|---|---|---|
f1 | 9.42E-04 | 2.22E-13 | 2.18E-13 | 9.01E+01 | 2.52E-02 | 1.62E-01 |
f2 | 1.16E+07 | 1.36E+07 | 1.16E+07 | 1.79E+07 | 3.89E+06 | 1.13E+07 |
f3 | 3.61E+08 | 5.67E+07 | 5.40E+07 | 7.37E+08 | 4.60E+08 | 3.88E+08 |
f4 | 2.44E+02 | 7.51E+03 | 6.37E+03 | 1.97E+03 | 5.59E+02 | 1.15E+02 |
f5 | 1.38E-02 | 1.56E-13 | 1.32E-13 | 1.54E+02 | 7.46E-02 | 2.27E-01 |
f6 | 1.03E+02 | 8.96E+01 | 8.35E+01 | 1.32E+02 | 6.40E+01 | 9.96E+01 |
f7 | 4.43E+01 | 3.33E+01 | 3.27E+01 | 3.51E+01 | 7.17E+01 | 4.21E+01 |
f8 | 2.08E+01 | 2.10E+01 | 2.10E+01 | 2.08E+01 | 2.08E+01 | 2.08E+01 |
f9 | 2.22E+01 | 2.35E+01 | 2.20E+01 | 2.48E+01 | 2.62E+01 | 2.24E+01 |
f10 | 6.24E-01 | 1.52E-01 | 1.28E-01 | 5.46E+01 | 1.75E+00 | 1.91E+00 |
f11 | 4.20E+01 | 4.38E+01 | 4.44E+01 | 5.26E+01 | 6.48E+01 | 8.46E+01 |
f12 | 8.40E+01 | 6.58E+01 | 5.50E+01 | 9.04E+01 | 8.81E+01 | 8.63E+01 |
f13 | 1.33E+02 | 1.27E+02 | 1.30E+02 | 1.41E+02 | 1.67E+02 | 1.45E+02 |
f14 | 1.18E+03 | 1.82E+03 | 1.84E+03 | 3.05E+03 | 1.82E+03 | 2.34E+03 |
f15 | 3.85E+03 | 6.95E+03 | 5.83E+03 | 4.54E+03 | 3.66E+03 | 5.16E+03 |
f16 | 1.15E+00 | 2.58E+00 | 2.54E+00 | 1.41E+00 | 1.31E+00 | 1.94E+00 |
f17 | 1.03E+02 | 8.37E+01 | 8.66E+01 | 1.67E+02 | 1.29E+02 | 1.86E+02 |
f18 | 1.27E+02 | 2.08E+02 | 1.73E+02 | 1.53E+02 | 1.34E+02 | 1.90E+02 |
f19 | 7.14E+00 | 4.11E+00 | 4.08E+00 | 1.06E+01 | 9.79E+00 | 1.41E+01 |
f20 | 1.42E+01 | 1.19E+01 | 1.16E+01 | 1.40E+01 | 1.13E+01 | 1.12E+01 |
f21 | 2.90E+02 | 2.92E+02 | 3.10E+02 | 3.68E+02 | 3.43E+02 | 3.07E+02 |
f22 | 1.67E+03 | 1.98E+03 | 1.89E+03 | 3.32E+03 | 2.07E+03 | 2.48E+03 |
f23 | 3.93E+03 | 6.27E+03 | 5.74E+03 | 4.64E+03 | 3.92E+03 | 5.49E+03 |
f24 | 2.67E+02 | 2.62E+02 | 2.63E+02 | 2.72E+02 | 2.77E+02 | 2.73E+02 |
f25 | 2.85E+02 | 2.86E+02 | 2.85E+02 | 2.89E+02 | 2.87E+02 | 2.91E+02 |
f26 | 2.67E+02 | 3.01E+02 | 2.95E+02 | 2.45E+02 | 2.26E+02 | 2.00E+02 |
f27 | 8.98E+02 | 8.83E+02 | 9.03E+02 | 9.54E+02 | 9.98E+02 | 9.30E+02 |
f28 | 3.14E+02 | 3.88E+02 | 3.23E+02 | 8.72E+02 | 4.41E+02 | 4.32E+02 |
平均排名 | 算法 | 综合rank | 单峰函数rank | 多峰函数rank | 复杂函数rank | 时间复杂度 |
---|---|---|---|---|---|---|
1 | QLPSOES | 2.55 | 2.9 | 2.77 | 1.94 | O(Max_FEs×N×D) |
2 | QLPSO-2D | 2.73 | 2.3 | 2.70 | 3.06 | O(Max_FEs×N2×D) |
3 | QLPSO-1D | 3.25 | 3.4 | 3.27 | 3.13 | O(Max_FEs×N2×D) |
4 | HCPSO | 3.68 | 3.4 | 3.53 | 4.13 | O(Max_FEs×N×D) |
5 | HPSO | 4.05 | 3.4 | 4.30 | 4.00 | O(Max_FEs×N×D) |
6 | QLPSOPSO | 4.73 | 5.6 | 4.43 | 4.75 | O(Max_FEs×N×D) |
Table 13 Friedman test and time complexity comparison of algorithms
平均排名 | 算法 | 综合rank | 单峰函数rank | 多峰函数rank | 复杂函数rank | 时间复杂度 |
---|---|---|---|---|---|---|
1 | QLPSOES | 2.55 | 2.9 | 2.77 | 1.94 | O(Max_FEs×N×D) |
2 | QLPSO-2D | 2.73 | 2.3 | 2.70 | 3.06 | O(Max_FEs×N2×D) |
3 | QLPSO-1D | 3.25 | 3.4 | 3.27 | 3.13 | O(Max_FEs×N2×D) |
4 | HCPSO | 3.68 | 3.4 | 3.53 | 4.13 | O(Max_FEs×N×D) |
5 | HPSO | 4.05 | 3.4 | 4.30 | 4.00 | O(Max_FEs×N×D) |
6 | QLPSOPSO | 4.73 | 5.6 | 4.43 | 4.75 | O(Max_FEs×N×D) |
算法名称 | 单个Q表策略 | 经验共享策略 |
---|---|---|
QLPSO-A | √ | × |
QLPSO-B | × | × |
QLPSOES | √ | √ |
Table 14 Strategy setting of algorithms
算法名称 | 单个Q表策略 | 经验共享策略 |
---|---|---|
QLPSO-A | √ | × |
QLPSO-B | × | × |
QLPSOES | √ | √ |
[1] | EBERHART R, KENNEDY J. A new optimizer using particle swarm theory[C]// Proceedings of the 6th International Symposium on Micro Machine and Human Science, Nagoya, Oct 4-6, 1995. Piscataway: IEEE, 1995: 39-43. |
[2] | KENNEDY J, EBERHART R. Particle swarm optimization[C]// Proceedings of the 1995 IEEE International Conference on Neural Network, Perth, Nov 27-Dec 1, 1995. Piscataway: IEEE, 1995: 1942-1948. |
[3] | EBERHART R, SHI Y. Comparing inertia weights and constriction factors in particle swarm optimization[C]// Proceedings of the 2000 Congress on Evolutionary Computation, La Jolla, Jul 16-19, 2000. Piscataway: IEEE, 2000: 84-88 |
[4] |
张其文, 尉雅晨. 独立自适应调整参数的粒子群优化算法[J]. 计算机科学与探索, 2020, 14(4): 637-648.
DOI |
ZHANG Q W, WEI Y C. Particle swarm optimization with independent adaptive parameter adjustment[J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(4): 637-648.
DOI |
|
[5] |
周文峰, 梁晓磊, 唐可心, 等. 具有拓扑时变和搜索扰动的混合粒子群优化算法[J]. 计算机应用, 2020, 40(7): 1913-1918.
DOI |
ZHOU W F, LIANG X L, TANG K X, et al. Hybrid particle swarm optimization algorithm with topological time-varying and search disturbance[J]. Journal of Computer Applications, 2020, 40(7): 1913-1918. | |
[6] | 石松, 陈云. 层次环形拓扑结构的动态粒子群算法[J]. 计算机工程与应用, 2013, 49(8): 1-5. |
SHI S, CHEN Y. Dynamic particle swarm optimization algorithm with hierarchical ring topology[J]. Computer Engineering and Applications, 2013, 49(8): 1-5. | |
[7] |
周蓉, 李俊, 王浩. 基于灰狼优化的反向学习粒子群算法[J]. 计算机工程与应用, 2020, 56(7): 48-56.
DOI |
ZHOU R, LI J, WANG H. Reverse learning particle swarm optimization based on grey wolf optimization[J]. Computer Engineering and Applications, 2020, 56(7): 48-56.
DOI |
|
[8] |
朱佳莹, 高茂庭. 融合粒子群与改进蚁群算法的AUV路径规划算法[J]. 计算机工程与应用, 2021, 57(6): 267-273.
DOI |
ZHU J Y, GAO M T. AUV path planning based on particle swarm optimization and improved ant colony optimization[J]. Computer Engineering and Applications, 2021, 57(6): 267-273. | |
[9] |
胡晓敏, 王明丰, 张首荣, 等. 用于文本聚类的新型差分进化粒子群算法[J]. 计算机工程与应用, 2021, 57(4): 61-67.
DOI |
HU X M, WANG M F, ZHANG S R, et al. New differential evolution with particle swarm optimization algorithm for text clustering[J]. Computer Engineering and Applications, 2021, 57(4): 61-67. | |
[10] | 许胜才, 蔡军, 程昀, 等. 基于拓扑结构与粒子变异改进的粒子群优化算法[J]. 控制与决策, 2019, 34(2): 419-428. |
XU S C, CAI J, CHENG Y, et al. Modified particle swarm optimization algorithms based on topology and particle mutation[J]. Control and Decision, 2019, 34(2): 419-428. | |
[11] |
廖玮霖, 程杉, 尚冬冬, 等. 多策略融合的粒子群优化算法[J]. 计算机工程与应用, 2021, 57(1): 69-76.
DOI |
LIAO W L, CHENG S, SHANG D D, et al. Particle swarm optimization algorithm integrated with multiple-strategies[J]. Computer Engineering and Applications, 2021, 57(1): 69-76. | |
[12] | PIPERAGKAS G S, GEORGOULAS G, PARSOPOULOS K E, et al. Integrating particle swarm optimization with reinforcement learning in noisy problems[C]// Proceedings of the 14th Annual Conference on Genetic and Evolutionary Computation, Philadelphia, Jul 2012. New York: ACM, 2012: 65-72. |
[13] | SAMMA H, LIM C P, SALEH J M. A new reinforcement learning-based memetic particle swarm optimizer[J]. Applied Soft Computing, 2016, 43(C): 276-297. |
[14] | 盛歆漪, 孙俊, 周頔, 等. 一种Q学习的量子粒子群优化方法[J]. 计算机工程与应用, 2014, 50(21): 8-13. |
SHENG X Y, SUN J, ZHOU D, et al. Quantum-behaved particle swarm optimization method based on Q-learning[J]. Computer Engineering and Applications, 2014, 50(21): 8-13. | |
[15] |
HSIEH Y Z, SU M C. A Q-learning-based swarm optimization algorithm for economic dispatch problem[J]. Neural Computing and Applications, 2016, 27(8): 2333-2350.
DOI URL |
[16] |
XU Y, PI D C. A reinforcement learning-based communication topology in particle swarm optimization[J]. Neural Computing and Applications, 2020, 32(14): 10007-10032.
DOI URL |
[17] | LIU Y X, LU H, CHENG S, et al. An adaptive online parameter control algorithm for particle swarm optimization based on reinforcement learning[C]// Proceedings of the 2019 IEEE Congress on Evolutionary Computation, Wellington, Jun 10-13, 2019. Piscataway: IEEE, 2019: 815-822. |
[18] | WATKINS C, DAYAN P. Q-learning[J]. Machine Learning, 1992, 8(3/4): 279-292. |
[19] |
宋威, 华子彧. 融入社会影响力的粒子群优化算法[J]. 计算机科学与探索, 2020, 14(11): 1908-1919.
DOI |
SONG W, HUA Z Y. Particle swarm optimization with social influence[J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(11): 1908-1919.
DOI |
|
[20] |
袁小平, 蒋硕. 基于分层自主学习的改进粒子群优化算法[J]. 计算机应用, 2019, 39(1): 148-153.
DOI |
YUAN X P, JIANG S. Improved particle swarm optimization algorithm based on hierarchical autonomous learning[J]. Journal of Computer Applications, 2019, 39(1): 148-153. | |
[21] | LIANG J J, QU B Y, SUGANTHAN P N. Problem definitions and evaluation criteria for the CEC 2013 special session on real-parameter optimization[R]. Singapore: Nanyang Technological University, 2013. |
[22] | 王东风, 孟丽. 粒子群优化算法的性能分析和参数选择[J]. 自动化学报, 2016, 42(10): 1552-1561. |
WANG D F, MENG L. Performance analysis and parameter selection of PSO algorithms[J]. Acta Automatica Sinica, 2016, 42(10): 1552-1561. | |
[23] | SHI Y, EBERHART R C. Empirical study of particle swarm optimization[C]// Proceedings of the 1999 Congress on Evolutionary Computation, Washington, Jul 6-9, 1999. Piscataway: IEEE, 1999: 1945-1950. |
[24] |
RATNAWEERA A, HALGAMUGE S K, WATSON H C. Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients[J]. IEEE Transactions on Evolutionary Computation, 2004, 8(3): 240-255.
DOI URL |
[25] | 刘瑞江, 张业旺, 闻崇炜, 等. 正交试验设计和分析方法研究[J]. 实验技术与管理, 2010, 27(9): 52-55. |
LIU R J, ZHANG Y W, WEN C W, et al. Study on the design and analysis methods of orthogonal experiment[J]. Experimental Technology and Management, 2010, 27(9): 52-55. | |
[26] | 孟凯露, 尚俊娜, 岳克强. 混合蛙跳算法的最优参数研究[J]. 计算机应用研究, 2019, 36(11): 3321-3324. |
MENG K L, SHANG J N, YUE K Q. Research on optimal parameters of shuffled frog leaping algorithm[J]. Application Research of Computers, 2019, 36(11): 3321-3324. | |
[27] | 申元霞, 王国胤, 曾传华. PSO模型种群多样性与学习参数的关系研究[J]. 电子学报, 2011, 39(6): 1238-1244. |
SHEN Y X, WANG G Y, ZENG C H. Study on the relationship between population diversity and learning parameters in particle swarm optimization[J]. Acta Electronica Sinica, 2011, 39(6): 1238-1244. |
[1] | CHEN Gongchi, RONG Huan, MA Tinghuai. Abstractive Text Summarization Model with Coherence Reinforcement and No Ground Truth Dependency [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(3): 621-636. |
[2] | WANG Yang, CHEN Zhibin, WU Zhaorui, GAO Yuan. Review of Reinforcement Learning for Combinatorial Optimization Problem [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(2): 261-279. |
[3] | LIU Jingxin, WANG Yan, HAN Xiao, XIA Changqing, SONG Baoyan. Research on Edge Cloud Resource Pricing Mechanism Based on Stackelberg Game [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(1): 153-162. |
[4] | CHEN Bin, LIU Weiguo. SAC Model Based Improved Genetic Algorithm for Solving TSP [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(9): 1680-1693. |
[5] | LI Chengyan, SONG Yue, MA Jintao. RIOPSO Algorithm for Fuzzy Cloud Resource Scheduling Problem [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(8): 1534-1545. |
[6] | JI Wei, LI Yingmei, JI Weidong, ZHANG Long. Two-Population Comprehensive Learning PSO Algorithm Based on Particle Per-mutation [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(4): 766-776. |
[7] | YAN Dan, HE Jun, LIU Hongyan, DU Xiaoyong. Considering Grade Information for Music Comment Text Automatic Generation [J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(8): 1389-1396. |
[8] | DENG Zhicheng, SUN Hui, ZHAO Jia, WANG Hui. Stochastic Single-Dimensional Mutated Particle Swarm Optimization with Dynamic Subspace [J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(8): 1409-1426. |
[9] | ZHAO Tingting, KONG Le, HAN Yajie, REN Dehua, CHEN Yarui. Review of Model-Based Reinforcement Learning [J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(6): 918-927. |
[10] | ZHANG Qiwen, WEI Yachen. Particle Swarm Optimization with Independent Adaptive Parameter Adjustment [J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(4): 637-648. |
[11] | CHENG Tianyi, WANG Yagang, LONG Xu, PAN Xiaoying. Multi-Level Dimensionality Reduction of Head and Neck Cancer Image Feature Selection Method [J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(4): 669-679. |
[12] | LIU Zhongqiang, YOU Xiaoming, LIU Sheng. Two-Population Ant Colony Algorithm Based on Heuristic Reinforcement Learning [J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(3): 460-469. |
[13] | YANG Min, WANG Jie. Bayesian Deep Reinforcement Learning Algorithm for Solving Deep Exploration Problems [J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(2): 307-316. |
[14] | SONG Wei, HUA Ziyu. Particle Swarm Optimization with Social Influence [J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(11): 1908-1919. |
[15] | WANG Lijuan, DING Shifei. SVM-ELM Model Based on Particle Swarm Optimization [J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(4): 657-665. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/