Journal of Frontiers of Computer Science and Technology ›› 2022, Vol. 16 ›› Issue (12): 2890-2902.DOI: 10.3778/j.issn.1673-9418.2104029
• Theory and Algorithm • Previous Articles
WANG Yonggui1, LI Xin1,+(), GUAN Lianzheng2
Received:
2021-04-09
Revised:
2021-05-27
Online:
2022-12-01
Published:
2021-06-03
About author:
WANG Yonggui, born in 1967, M.S., professor, member of CCF. His research interests include big data, intelligent data processing, etc.Supported by:
通讯作者:
+E-mail: lntu_lixin@163.com作者简介:
王永贵(1967—),男,内蒙古宁城人,硕士,教授,CCF会员,主要研究方向为大数据、智能数据处理等。基金资助:
CLC Number:
WANG Yonggui, LI Xin, GUAN Lianzheng. Improved Whale Optimization Algorithm for Solving High-Dimensional Optimiza-tion Problems[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(12): 2890-2902.
王永贵, 李鑫, 关连正. 求解高维优化问题的改进鲸鱼优化算法[J]. 计算机科学与探索, 2022, 16(12): 2890-2902.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2104029
函数名称 | 函数表达式 | 搜索空间 | 全局最优值 | 特性 |
---|---|---|---|---|
Griewank | [-600,600] | 0 | 单峰 | |
Powell Sum | [-1,1] | 0 | 单峰 | |
Sphere | [-5.12,5.12] | 0 | 单峰 | |
Schwefel 2.20 | [-100,100] | 0 | 单峰 | |
Schwefel 2.22 | [-100,100] | 0 | 单峰 | |
Ackley | [-32,32] | 0 | 多峰 | |
Periodic | [-10,10] | 0.9 | 多峰 | |
Quartic | [-1.28,1.28] | 0 | 多峰 | |
Rastrigin | [-5.12,5.12] | 0 | 多峰 | |
Salomon | [-5,5] | 0 | 多峰 |
Table 1 Benchmark functions
函数名称 | 函数表达式 | 搜索空间 | 全局最优值 | 特性 |
---|---|---|---|---|
Griewank | [-600,600] | 0 | 单峰 | |
Powell Sum | [-1,1] | 0 | 单峰 | |
Sphere | [-5.12,5.12] | 0 | 单峰 | |
Schwefel 2.20 | [-100,100] | 0 | 单峰 | |
Schwefel 2.22 | [-100,100] | 0 | 单峰 | |
Ackley | [-32,32] | 0 | 多峰 | |
Periodic | [-10,10] | 0.9 | 多峰 | |
Quartic | [-1.28,1.28] | 0 | 多峰 | |
Rastrigin | [-5.12,5.12] | 0 | 多峰 | |
Salomon | [-5,5] | 0 | 多峰 |
Function | Index | WOA | LWOA | LXWOA | DPWOA |
---|---|---|---|---|---|
best | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | |
f1 | worst | 5.74E-23 | 3.27E-36 | 4.93E-52 | 0.00E+00 |
mean | 6.79E-35 | 3.95E-46 | 2.87E-59 | 0.00E+00 | |
std | 1.80E-34 | 9.53E-47 | 3.53E-56 | 0.00E+00 | |
best | 1.18E-144 | 1.06E-203 | 1.36E-239 | 0.00E+00 | |
f2 | worst | 4.93E-130 | 1.92E-153 | 4.10E-225 | 0.00E+00 |
mean | 9.25E-131 | 2.45E-186 | 9.45E-226 | 0.00E+00 | |
std | 1.50E-130 | 4.47E-172 | 0.00E+00 | 0.00E+00 | |
best | 3.76E-91 | 0.00E+00 | 6.27E-132 | 0.00E+00 | |
f3 | worst | 1.05E-80 | 6.38E-85 | 1.16E-115 | 0.00E+00 |
mean | 1.05E-81 | 3.25E-93 | 2.45E-116 | 0.00E+00 | |
std | 3.16E-81 | 1.38E-90 | 4.57E-116 | 0.00E+00 | |
best | 2.24E-50 | 1.52E-61 | 2.45E-121 | 0.00E+00 | |
f4 | worst | 1.52E-48 | 5.88E-57 | 1.67E-61 | 5.47E-62 |
mean | 2.44E-49 | 7.82E-59 | 4.09E-62 | 4.11E-64 | |
std | 4.44E-49 | 1.47E-58 | 6.36E-62 | 4.08E-65 | |
best | 1.19E-51 | 1.18E-68 | 5.80E-117 | 0.00E+00 | |
f5 | worst | 4.66E-47 | 4.36E-52 | 1.25E-61 | 4.88E-308 |
mean | 5.76E-48 | 2.83E-54 | 5.42E-62 | 6.78E-309 | |
std | 1.38E-47 | 9.88E-56 | 5.20E-62 | 0.00E+00 | |
best | 8.88E-16 | 2.57E-16 | 8.88E-16 | 0.00E+00 | |
f6 | worst | 6.22E-15 | 1.12E-15 | 8.88E-16 | 0.00E+00 |
mean | 3.73E-15 | 7.08E-16 | 8.88E-16 | 0.00E+00 | |
std | 2.77E-15 | 2.24E-16 | 0.00E+00 | 0.00E+00 | |
best | 9.00E-01 | 9.00E-01 | 9.00E-01 | 9.00E-01 | |
f7 | worst | 3.80E+00 | 1.88E+00 | 9.00E-01 | 9.00E-01 |
mean | 1.27E+00 | 1.14E+00 | 9.00E-01 | 9.00E-01 | |
std | 8.58E-01 | 8.35E-01 | 0.00E+00 | 0.00E+00 | |
best | 6.22E-05 | 1.94E-06 | 8.30E-06 | 1.26E-12 | |
f8 | worst | 4.14E-03 | 8.26E-04 | 6.72E-04 | 6.74E-11 |
mean | 1.19E-03 | 5.69E-04 | 2.05E-04 | 3.54E-11 | |
std | 1.31E-03 | 6.33E-04 | 2.44E-04 | 8.37E-11 | |
best | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | |
f9 | worst | 0.00E+00 | 4.41E-268 | 0.00E+00 | 0.00E+00 |
mean | 0.00E+00 | 3.69E-328 | 0.00E+00 | 0.00E+00 | |
std | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | |
best | 9.28E-02 | 1.23E-03 | 8.99E-02 | 0.00E+00 | |
f10 | worst | 2.00E-01 | 5.41E-02 | 2.00E-01 | 0.00E+00 |
mean | 1.10E-01 | 2.72E-03 | 9.99E-02 | 0.00E+00 | |
std | 5.38E-02 | 9.00E-01 | 6.32E-02 | 0.00E+00 |
Table 2 Comparison of algorithms for solving 100D functions
Function | Index | WOA | LWOA | LXWOA | DPWOA |
---|---|---|---|---|---|
best | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | |
f1 | worst | 5.74E-23 | 3.27E-36 | 4.93E-52 | 0.00E+00 |
mean | 6.79E-35 | 3.95E-46 | 2.87E-59 | 0.00E+00 | |
std | 1.80E-34 | 9.53E-47 | 3.53E-56 | 0.00E+00 | |
best | 1.18E-144 | 1.06E-203 | 1.36E-239 | 0.00E+00 | |
f2 | worst | 4.93E-130 | 1.92E-153 | 4.10E-225 | 0.00E+00 |
mean | 9.25E-131 | 2.45E-186 | 9.45E-226 | 0.00E+00 | |
std | 1.50E-130 | 4.47E-172 | 0.00E+00 | 0.00E+00 | |
best | 3.76E-91 | 0.00E+00 | 6.27E-132 | 0.00E+00 | |
f3 | worst | 1.05E-80 | 6.38E-85 | 1.16E-115 | 0.00E+00 |
mean | 1.05E-81 | 3.25E-93 | 2.45E-116 | 0.00E+00 | |
std | 3.16E-81 | 1.38E-90 | 4.57E-116 | 0.00E+00 | |
best | 2.24E-50 | 1.52E-61 | 2.45E-121 | 0.00E+00 | |
f4 | worst | 1.52E-48 | 5.88E-57 | 1.67E-61 | 5.47E-62 |
mean | 2.44E-49 | 7.82E-59 | 4.09E-62 | 4.11E-64 | |
std | 4.44E-49 | 1.47E-58 | 6.36E-62 | 4.08E-65 | |
best | 1.19E-51 | 1.18E-68 | 5.80E-117 | 0.00E+00 | |
f5 | worst | 4.66E-47 | 4.36E-52 | 1.25E-61 | 4.88E-308 |
mean | 5.76E-48 | 2.83E-54 | 5.42E-62 | 6.78E-309 | |
std | 1.38E-47 | 9.88E-56 | 5.20E-62 | 0.00E+00 | |
best | 8.88E-16 | 2.57E-16 | 8.88E-16 | 0.00E+00 | |
f6 | worst | 6.22E-15 | 1.12E-15 | 8.88E-16 | 0.00E+00 |
mean | 3.73E-15 | 7.08E-16 | 8.88E-16 | 0.00E+00 | |
std | 2.77E-15 | 2.24E-16 | 0.00E+00 | 0.00E+00 | |
best | 9.00E-01 | 9.00E-01 | 9.00E-01 | 9.00E-01 | |
f7 | worst | 3.80E+00 | 1.88E+00 | 9.00E-01 | 9.00E-01 |
mean | 1.27E+00 | 1.14E+00 | 9.00E-01 | 9.00E-01 | |
std | 8.58E-01 | 8.35E-01 | 0.00E+00 | 0.00E+00 | |
best | 6.22E-05 | 1.94E-06 | 8.30E-06 | 1.26E-12 | |
f8 | worst | 4.14E-03 | 8.26E-04 | 6.72E-04 | 6.74E-11 |
mean | 1.19E-03 | 5.69E-04 | 2.05E-04 | 3.54E-11 | |
std | 1.31E-03 | 6.33E-04 | 2.44E-04 | 8.37E-11 | |
best | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | |
f9 | worst | 0.00E+00 | 4.41E-268 | 0.00E+00 | 0.00E+00 |
mean | 0.00E+00 | 3.69E-328 | 0.00E+00 | 0.00E+00 | |
std | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | |
best | 9.28E-02 | 1.23E-03 | 8.99E-02 | 0.00E+00 | |
f10 | worst | 2.00E-01 | 5.41E-02 | 2.00E-01 | 0.00E+00 |
mean | 1.10E-01 | 2.72E-03 | 9.99E-02 | 0.00E+00 | |
std | 5.38E-02 | 9.00E-01 | 6.32E-02 | 0.00E+00 |
Function | Index | WOA | LWOA | LXWOA | DPWOA |
---|---|---|---|---|---|
best | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | |
f1 | worst | 4.78E-21 | 5.28E-35 | 4.85E-50 | 0.00E+00 |
mean | 7.54E-32 | 8.68E-43 | 3.68E-56 | 0.00E+00 | |
std | 3.68E-32 | 1.36E-45 | 8.78E-55 | 0.00E+00 | |
best | 9.52E-144 | 9.28E-201 | 7.17E-237 | 0.00E+00 | |
f2 | worst | 6.47E-122 | 3.68E-152 | 3.43E-224 | 0.00E+00 |
mean | 6.47E-123 | 4.15E-187 | 6.95E-225 | 0.00E+00 | |
std | 1.94E-122 | 5.26E-168 | 0.00E+00 | 0.00E+00 | |
best | 7.49E-88 | 6.85E-207 | 1.26E-115 | 0.00E+00 | |
f3 | worst | 2.02E-80 | 8.21E-82 | 4.78E-110 | 0.00E+00 |
mean | 3.66E-81 | 5.28E-88 | 9.57E-111 | 0.00E+00 | |
std | 7.21E-81 | 4.75E-87 | 1.90E-110 | 0.00E+00 | |
best | 3.94E-50 | 2.06E-60 | 6.06E-117 | 0.00E+00 | |
f4 | worst | 2.79E-45 | 6.13E-56 | 1.33E-58 | 7.71E-62 |
mean | 3.53E-46 | 6.88E-58 | 3.24E-59 | 6.50E-64 | |
std | 8.42E-46 | 4.29E-57 | 5.13E-59 | 5.62E-65 | |
best | 5.75E-51 | 4.52E-62 | 9.13E-116 | 0.00E+00 | |
f5 | worst | 1.58E-46 | 1.38E-51 | 4.49E-47 | 6.54E-306 |
mean | 3.79E-47 | 4.37E-52 | 9.24E-48 | 2.55E-307 | |
std | 5.15E-47 | 3.51E-54 | 1.78E-47 | 0.00E+00 | |
best | 8.88E-16 | 2.86E-16 | 8.88E-16 | 0.00E+00 | |
f6 | worst | 6.22E-15 | 1.98E-15 | 8.88E-16 | 0.00E+00 |
mean | 3.82E-15 | 7.41E-16 | 8.88E-16 | 0.00E+00 | |
std | 2.84E-15 | 2.62E-16 | 0.00E+00 | 0.00E+00 | |
best | 9.00E-01 | 9.00E-01 | 9.00E-01 | 9.00E-01 | |
f7 | worst | 5.46E+00 | 3.58E+00 | 9.00E-01 | 9.00E-01 |
mean | 2.86E+00 | 2.37E+00 | 9.00E-01 | 9.00E-01 | |
std | 9.87E-01 | 8.95E-01 | 0.00E+00 | 0.00E+00 | |
best | 4.07E-04 | 4.59E-06 | 5.49E-05 | 3.58E-12 | |
f8 | worst | 3.06E-03 | 8.39E-03 | 1.73E-03 | 9.58E-11 |
mean | 1.24E-03 | 9.68E-04 | 7.34E-04 | 9.98E-11 | |
std | 9.58E-04 | 7.85E-04 | 6.61E-04 | 8.85E-11 | |
best | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | |
f9 | worst | 3.43E-203 | 4.06E-252 | 5.39E-265 | 0.00E+00 |
mean | 9.68E-269 | 7.56E-306 | 8.12E-278 | 0.00E+00 | |
std | 4.02E-253 | 0.00E+00 | 0.00E+00 | 0.00E+00 | |
best | 1.56E-01 | 2.72E-02 | 8.99E-02 | 0.00E+00 | |
f10 | worst | 9.35E-01 | 8.25E-01 | 2.00E-01 | 0.00E+00 |
mean | 5.10E-01 | 6.57E-02 | 1.20E-01 | 0.00E+00 | |
std | 4.98E-01 | 7.58E-01 | 7.48E-02 | 0.00E+00 |
Table 3 Comparison of algorithms for solving 500D functions
Function | Index | WOA | LWOA | LXWOA | DPWOA |
---|---|---|---|---|---|
best | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | |
f1 | worst | 4.78E-21 | 5.28E-35 | 4.85E-50 | 0.00E+00 |
mean | 7.54E-32 | 8.68E-43 | 3.68E-56 | 0.00E+00 | |
std | 3.68E-32 | 1.36E-45 | 8.78E-55 | 0.00E+00 | |
best | 9.52E-144 | 9.28E-201 | 7.17E-237 | 0.00E+00 | |
f2 | worst | 6.47E-122 | 3.68E-152 | 3.43E-224 | 0.00E+00 |
mean | 6.47E-123 | 4.15E-187 | 6.95E-225 | 0.00E+00 | |
std | 1.94E-122 | 5.26E-168 | 0.00E+00 | 0.00E+00 | |
best | 7.49E-88 | 6.85E-207 | 1.26E-115 | 0.00E+00 | |
f3 | worst | 2.02E-80 | 8.21E-82 | 4.78E-110 | 0.00E+00 |
mean | 3.66E-81 | 5.28E-88 | 9.57E-111 | 0.00E+00 | |
std | 7.21E-81 | 4.75E-87 | 1.90E-110 | 0.00E+00 | |
best | 3.94E-50 | 2.06E-60 | 6.06E-117 | 0.00E+00 | |
f4 | worst | 2.79E-45 | 6.13E-56 | 1.33E-58 | 7.71E-62 |
mean | 3.53E-46 | 6.88E-58 | 3.24E-59 | 6.50E-64 | |
std | 8.42E-46 | 4.29E-57 | 5.13E-59 | 5.62E-65 | |
best | 5.75E-51 | 4.52E-62 | 9.13E-116 | 0.00E+00 | |
f5 | worst | 1.58E-46 | 1.38E-51 | 4.49E-47 | 6.54E-306 |
mean | 3.79E-47 | 4.37E-52 | 9.24E-48 | 2.55E-307 | |
std | 5.15E-47 | 3.51E-54 | 1.78E-47 | 0.00E+00 | |
best | 8.88E-16 | 2.86E-16 | 8.88E-16 | 0.00E+00 | |
f6 | worst | 6.22E-15 | 1.98E-15 | 8.88E-16 | 0.00E+00 |
mean | 3.82E-15 | 7.41E-16 | 8.88E-16 | 0.00E+00 | |
std | 2.84E-15 | 2.62E-16 | 0.00E+00 | 0.00E+00 | |
best | 9.00E-01 | 9.00E-01 | 9.00E-01 | 9.00E-01 | |
f7 | worst | 5.46E+00 | 3.58E+00 | 9.00E-01 | 9.00E-01 |
mean | 2.86E+00 | 2.37E+00 | 9.00E-01 | 9.00E-01 | |
std | 9.87E-01 | 8.95E-01 | 0.00E+00 | 0.00E+00 | |
best | 4.07E-04 | 4.59E-06 | 5.49E-05 | 3.58E-12 | |
f8 | worst | 3.06E-03 | 8.39E-03 | 1.73E-03 | 9.58E-11 |
mean | 1.24E-03 | 9.68E-04 | 7.34E-04 | 9.98E-11 | |
std | 9.58E-04 | 7.85E-04 | 6.61E-04 | 8.85E-11 | |
best | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | |
f9 | worst | 3.43E-203 | 4.06E-252 | 5.39E-265 | 0.00E+00 |
mean | 9.68E-269 | 7.56E-306 | 8.12E-278 | 0.00E+00 | |
std | 4.02E-253 | 0.00E+00 | 0.00E+00 | 0.00E+00 | |
best | 1.56E-01 | 2.72E-02 | 8.99E-02 | 0.00E+00 | |
f10 | worst | 9.35E-01 | 8.25E-01 | 2.00E-01 | 0.00E+00 |
mean | 5.10E-01 | 6.57E-02 | 1.20E-01 | 0.00E+00 | |
std | 4.98E-01 | 7.58E-01 | 7.48E-02 | 0.00E+00 |
Function | Index | WOA | LWOA | LXWOA | DPWOA |
---|---|---|---|---|---|
best | 3.06E-28 | 0.00E+00 | 0.00E+00 | 0.00E+00 | |
f1 | worst | 6.58E+00 | 8.12E-35 | 6.51E-49 | 0.00E+00 |
mean | 9.31E-19 | 2.39E-44 | 4.39E-57 | 0.00E+00 | |
std | 1.06E-18 | 6.29E-44 | 1.01E-56 | 0.00E+00 | |
best | 3.73E-148 | 8.27E-201 | 4.13E-238 | 0.00E+00 | |
f2 | worst | 8.03E-70 | 1.63E-110 | 1.11E-115 | 4.91E-245 |
mean | 1.61E-131 | 9.12E-163 | 2.22E-179 | 0.00E+00 | |
std | 3.21E-131 | 2.68E-165 | 8.14E-171 | 0.00E+00 | |
best | 1.64E-88 | 2.09E-205 | 6.11E-127 | 0.00E+00 | |
f3 | worst | 3.26E-45 | 5.49E-81 | 4.25E-107 | 0.00E+00 |
mean | 1.31E-80 | 3.37E-86 | 8.50E-108 | 0.00E+00 | |
std | 1.11E-80 | 3.14E-85 | 1.70E-107 | 0.00E+00 | |
best | 1.12E-48 | 7.28E-58 | 9.55E-85 | 0.00E+00 | |
f4 | worst | 2.14E-45 | 6.88E-48 | 5.70E-37 | 8.83E-62 |
mean | 4.55E-46 | 5.15E-52 | 1.20E-56 | 6.52E-64 | |
std | 8.41E-46 | 5.21E-53 | 2.25E-58 | 7.46E-65 | |
best | 2.01E-47 | 8.52E-62 | 3.25E-115 | 0.00E+00 | |
f5 | worst | 1.52E-45 | 3.26E-45 | 1.99E-37 | 8.29E-306 |
mean | 3.60E-46 | 4.87E-46 | 5.35E-38 | 1.34E-307 | |
std | 5.81E-46 | 3.51E-51 | 7.55E-38 | 0.00E+00 | |
best | 8.88E-16 | 2.86E-16 | 8.88E-16 | 0.00E+00 | |
f6 | worst | 1.33E-14 | 2.86E-15 | 2.86E-15 | 8.88E-16 |
mean | 5.86E-15 | 8.36E-16 | 8.88E-16 | 1.23E-16 | |
std | 4.26E-15 | 6.38E-16 | 0.00E+00 | 3.55E-17 | |
best | 9.00E-01 | 9.00E-01 | 9.00E-01 | 9.00E-01 | |
f7 | worst | 9.19E+00 | 3.96E+00 | 9.00E-01 | 9.00E-01 |
mean | 5.02E+00 | 3.76E+00 | 9.00E-01 | 9.00E-01 | |
std | 9.97E-01 | 9.03E-01 | 0.00E+00 | 0.00E+00 | |
best | 9.19E-04 | 1.37E-05 | 7.62E-05 | 4.21E-12 | |
f8 | worst | 7.60E-01 | 9.81E-02 | 1.65E-02 | 9.88E-04 |
mean | 4.57E-03 | 3.55E-03 | 5.38E-04 | 1.37E-10 | |
std | 2.62E-03 | 8.19E-04 | 5.86E-04 | 2.06E-10 | |
best | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | |
f9 | worst | 7.36E-228 | 7.28E-266 | 2.36E-263 | 0.00E+00 |
mean | 1.34E-253 | 1.16E-277 | 8.47E-282 | 0.00E+00 | |
std | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | |
best | 2.37E-01 | 3.52E-02 | 9.99E-02 | 0.00E+00 | |
f10 | worst | 6.25E-01 | 9.34E-01 | 2.00E-01 | 0.00E+00 |
mean | 5.34E-01 | 9.27E-02 | 1.20E-01 | 0.00E+00 | |
std | 5.88E-01 | 8.04E-01 | 7.61E-02 | 0.00E+00 |
Table 4 Comparison of algorithms for solving 1000D functions
Function | Index | WOA | LWOA | LXWOA | DPWOA |
---|---|---|---|---|---|
best | 3.06E-28 | 0.00E+00 | 0.00E+00 | 0.00E+00 | |
f1 | worst | 6.58E+00 | 8.12E-35 | 6.51E-49 | 0.00E+00 |
mean | 9.31E-19 | 2.39E-44 | 4.39E-57 | 0.00E+00 | |
std | 1.06E-18 | 6.29E-44 | 1.01E-56 | 0.00E+00 | |
best | 3.73E-148 | 8.27E-201 | 4.13E-238 | 0.00E+00 | |
f2 | worst | 8.03E-70 | 1.63E-110 | 1.11E-115 | 4.91E-245 |
mean | 1.61E-131 | 9.12E-163 | 2.22E-179 | 0.00E+00 | |
std | 3.21E-131 | 2.68E-165 | 8.14E-171 | 0.00E+00 | |
best | 1.64E-88 | 2.09E-205 | 6.11E-127 | 0.00E+00 | |
f3 | worst | 3.26E-45 | 5.49E-81 | 4.25E-107 | 0.00E+00 |
mean | 1.31E-80 | 3.37E-86 | 8.50E-108 | 0.00E+00 | |
std | 1.11E-80 | 3.14E-85 | 1.70E-107 | 0.00E+00 | |
best | 1.12E-48 | 7.28E-58 | 9.55E-85 | 0.00E+00 | |
f4 | worst | 2.14E-45 | 6.88E-48 | 5.70E-37 | 8.83E-62 |
mean | 4.55E-46 | 5.15E-52 | 1.20E-56 | 6.52E-64 | |
std | 8.41E-46 | 5.21E-53 | 2.25E-58 | 7.46E-65 | |
best | 2.01E-47 | 8.52E-62 | 3.25E-115 | 0.00E+00 | |
f5 | worst | 1.52E-45 | 3.26E-45 | 1.99E-37 | 8.29E-306 |
mean | 3.60E-46 | 4.87E-46 | 5.35E-38 | 1.34E-307 | |
std | 5.81E-46 | 3.51E-51 | 7.55E-38 | 0.00E+00 | |
best | 8.88E-16 | 2.86E-16 | 8.88E-16 | 0.00E+00 | |
f6 | worst | 1.33E-14 | 2.86E-15 | 2.86E-15 | 8.88E-16 |
mean | 5.86E-15 | 8.36E-16 | 8.88E-16 | 1.23E-16 | |
std | 4.26E-15 | 6.38E-16 | 0.00E+00 | 3.55E-17 | |
best | 9.00E-01 | 9.00E-01 | 9.00E-01 | 9.00E-01 | |
f7 | worst | 9.19E+00 | 3.96E+00 | 9.00E-01 | 9.00E-01 |
mean | 5.02E+00 | 3.76E+00 | 9.00E-01 | 9.00E-01 | |
std | 9.97E-01 | 9.03E-01 | 0.00E+00 | 0.00E+00 | |
best | 9.19E-04 | 1.37E-05 | 7.62E-05 | 4.21E-12 | |
f8 | worst | 7.60E-01 | 9.81E-02 | 1.65E-02 | 9.88E-04 |
mean | 4.57E-03 | 3.55E-03 | 5.38E-04 | 1.37E-10 | |
std | 2.62E-03 | 8.19E-04 | 5.86E-04 | 2.06E-10 | |
best | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | |
f9 | worst | 7.36E-228 | 7.28E-266 | 2.36E-263 | 0.00E+00 |
mean | 1.34E-253 | 1.16E-277 | 8.47E-282 | 0.00E+00 | |
std | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | |
best | 2.37E-01 | 3.52E-02 | 9.99E-02 | 0.00E+00 | |
f10 | worst | 6.25E-01 | 9.34E-01 | 2.00E-01 | 0.00E+00 |
mean | 5.34E-01 | 9.27E-02 | 1.20E-01 | 0.00E+00 | |
std | 5.88E-01 | 8.04E-01 | 7.61E-02 | 0.00E+00 |
[1] | 龙文, 蔡绍洪, 焦建军, 等. 求解高维优化问题的混合灰狼优化算法[J]. 控制与决策, 2016, 31(11): 1991-1997. |
LONG W, CAI S H, JIAO J J, et al. Hybrid gray wolf opti-mization algorithm for solving high-dimensional optimization problems[J]. Control and Decision, 2016, 31(11): 1991-1997. | |
[2] |
MIRJALILI S, LEWIS A. The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95: 51-67.
DOI URL |
[3] |
王芙银, 张德生, 张晓. 结合鲸鱼优化算法的自适应密度峰值聚类算法[J]. 计算机工程与应用, 2021, 57(3): 94-102.
DOI |
WANG F Y, ZHANG D S, ZHANG X. Adaptive density peaking clustering algorithm combined with whale optimi-zation algorithm[J]. Computer Engineering and Applications, 2021, 57(3): 94-102. | |
[4] | MOUSAVIRAD S J, EBRAHIMPOUR-KOMLEH H. Multilevel image thresholding using entropy of histogram and recently developed population-based metaheuristic algorithms[J]. Evolu-tionary Intelligence, 2017, 10(1/2): 45-75. |
[5] | SAIDALA R K, DEVARAKONDA N. Improved whale op-timization algorithm case study: clinical data of anaemic pregnant woman[M]// SATAPATHYS C, BHATEJAV, RAJUK S, eds. Data Engineering and Intelligent Computing. Sin-gapore: Springer, 2018: 271-281. |
[6] |
KAVEH A, GHAZAAN M I. Enhanced whale optimization algorithm for sizing optimization of skeletal structures[J]. Mechanics Based Design of Structures and Machines, 2017, 45(3): 345-362.
DOI URL |
[7] |
张公凯, 陈才学, 郑拓. 改进鲸鱼算法在电动汽车有序充电中的应用[J]. 计算机工程与应用, 2021, 57(4): 272-278.
DOI |
ZHANG G K, CHEN C X, ZHENG T. Application of im-proved whale optimization algorithm in ordered charging of electric vehicle[J]. Computer Engineering and Applica-tions, 2021, 57(4): 272-278. | |
[8] |
OLIV D, MOHAMED A E A, HASSANIEN A E. Parameter estimation of photovoltaic cells using an improved chaotic whale optimization algorithm[J]. Applied Energy, 2017, 200(15): 141-154.
DOI URL |
[9] | TRIVEDI I N, JANGIR P, KUMAR A, et al. A novel hybrid PSO-WOA algorithm for global numerical functions optimi-zation[M]// BHATIAS K, MISHRAK K, TIWARIS, eds. Advances in Computer and Computational Sciences. Cham: Springer, 2018: 53-60. |
[10] |
MAFARJA M M, MIRJALILI S. Hybrid whale optimization algorithm with simulated annealing for feature selection[J]. Neurocomputing, 2017, 260: 302-312.
DOI URL |
[11] | KHALILPOURAZARI S, KHALILPOURAZARY S. SCWOA: an efficient hybrid algorithm for parameter optimization of multi-pass milling process[J]. Journal of Industrial and Pro-duction Engineering, 2018, 35(3): 135-147. |
[12] |
KAUR G, ARORA S. Chaotic whale optimization algorithm[J]. Journal of Computational Design and Engineering, 2018, 5(3): 275-284.
DOI URL |
[13] |
SAYED G I, DARWISH A, HASSANIEN A E. A new chaotic whale optimization algorithm for features selection[J]. Journal of Classification, 2018, 35(2): 300-344.
DOI URL |
[14] |
CHEN H, XU Y, WANG M, et al. A balanced whale opti-mization algorithm for constrained engineering design pro-blems[J]. Applied Mathematical Modelling, 2019, 71: 45-59.
DOI URL |
[15] |
CHEN H, YANG C, HEIDARI A A, et al. An efficient dou-ble adaptive random spare reinforced whale optimization algorithm[J]. Expert Systems with Applications, 2020, 154: 113018.
DOI URL |
[16] |
肖子雅, 刘升. 精英反向黄金正弦鲸鱼算法及其工程优化研究[J]. 电子学报, 2019, 47(10): 2177-2186.
DOI |
XIAO Z Y, LIU S. Study on elite opposition-based golden-sine whale optimization algorithm and its application of pro-ject optimization[J]. Acta Electronica Sinica, 2019, 47(10):2177-2186. | |
[17] | 涂春梅, 陈国彬, 刘超. 混沌反馈自适应鲸鱼优化算法研究[J]. 统计与决策, 2019, 35(7): 17-20. |
TU C M, CHEN G B, LIU C. Research on chaotic feedback adaptive whale optimization algorithm[J]. Statistics and Deci-sion, 2019, 35(7): 17-20. | |
[18] | HUSSIEN A G, HASSANIEN A E, HOUSSEIN E H, et al. S-shaped binary whale optimization algorithm for feature selection[M]// BHATTACHARYYAS, MUKHERJEEA, BH-AUMIKH, eds. Recent Trends in Signal and Image Pro-cessing. Cham: Springer, 2019: 79-87. |
[19] |
SUN Y J, WANG X L, CHEN Y H, et al. A modified whale optimization algorithm for large-scale global optimization problems[J]. Expert Systems with Applications, 2018, 114: 563-577.
DOI URL |
[20] |
HEIDARI A A, ALJARAH I, FARIS H, et al. An enhanced associative learning-based exploratory whale optimizer for global optimization[J]. Neural Computing and Applications, 2020, 32(9): 5185-5211.
DOI URL |
[21] | 匡芳君, 金忠, 徐蔚鸿, 等. Tent混沌人工蜂群与粒子群混合算法[J]. 控制与决策, 2015, 30(5): 839-847. |
KUANG F J, JIN Z, XU W H, et al. Hybridization algorithm of Tent chaos artificial bee colony and particle swarm opti-mization[J]. Control and Decision, 2015, 30(5): 839-847. | |
[22] |
赵世杰, 高雷阜, 于冬梅, 等. 带混沌侦查机制的蚁狮优化算法优化SVM参数[J]. 计算机科学与探索, 2016, 10(5): 722-731.
DOI URL |
ZHAO S J, GAO L F, YU D M, et al. Ant lion optimizer with chaotic investigation mechanism for optimizing SVM parameters[J]. Journal of Frontiers of Computer Science and Technology, 2016, 10(5): 722-731.
DOI URL |
|
[23] | 傅文渊, 凌朝东. 自适应折叠混沌优化方法[J]. 西安交通大学学报, 2013, 47(2): 33-38. |
FU W Y, LING C D. An adaptive iterative chaos optimi-zation method[J]. Journal of Xi’an Jiaotong University, 2013, 47(2): 33-38. | |
[24] | DEEP K, THAKUR M. A new crossover operator for real coded genetic algorithms[J]. Applied Mathematics & Com-putation, 2007, 188(1): 895-911. |
[25] | TIZHOOSH H R. Opposition-based learning: a new scheme for machine intelligence[C]// Proceedings of the 2005 Inter-national Conference on Computational Intelligence for Mo-delling Control and Automation, International Conference on Intelligent Agents, Web Technologies and Internet Com-merce, Vienna, Nov 28-30, 2005. Washington: IEEE Computer Society, 2005: 695-701. |
[26] |
ZHOU Y, LING Y Q, LUO Q F. Lévy flight trajectory-based whale optimization algorithm for global optimization[J]. IEEE Access, 2017, 5: 6168-6186.
DOI URL |
[27] | SINGH A. Laplacian whale optimization algorithm[J]. Inter-national Journal of System Assurance Engineering and Ma-nagement, 2019, 10(4): 713-730. |
[28] | JAMIL M, YANG X S. A literature survey of benchmark functions for global optimization problems[J]. International Journal of Mathematical Modelling & Numerical Optimisa-tion, 2013, 4(2): 150-194. |
[29] |
王永贵, 张博雅, 吕欢欢. 自适应多普勒补偿与变异选择的蝙蝠算法[J]. 计算机科学与探索, 2020, 14(1): 125-139.
DOI URL |
WANG Y G, ZHANG B Y, LV H H. Self-adaptive Doppler compensation and mutation choice of bat algorithm[J]. Jour-nal of Frontiers of Computer Science and Technology, 2020, 14(1): 125-139. |
[1] | CHEN Lan, WANG Lianguo. Extreme Individual Guided Artificial Bee Colony Algorithm [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(11): 2628-2641. |
[2] | CHEN Lei, WU Runxiu, LI Peiwu, ZHAO Jia. Weighted K-nearest Neighbors and Multi-cluster Merge Density Peaks Clustering Algorithm [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(9): 2163-2176. |
[3] | ZHOU Xiaoxiang, HUANG Chengfeng, LI Hao. Competition Strategy of Online Retailers Considering Service Sensitivity and Cognitive Differences [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(9): 2096-2107. |
[4] | WANG Tiedan, ZHANG Yuqing, PENG Dinghong. Hierarchical Multi-attribute Decision-Making Method with Twofold Integral Operator of Cloud Model [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(8): 1898-1909. |
[5] | ZHANG Linyu, TU Zhiying, HANG Shaoshi, ZHANG Bolin, CHU Dianhui. Data Set Construction Method for Intelligent Health Care and Its Application [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(7): 1543-1551. |
[6] | ZHANG Shuohang, GUO Gaizhi. Review of Multiple Traveling Salesman Model and Its Application [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(7): 1516-1528. |
[7] | LI Shouyu, HE Qing, DU Nisuo. Butterfly Optimization Algorithm for Chaotic Feedback Sharing and Group Synergy [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(7): 1661-1672. |
[8] | GUO Yuhan, LIU Qiuyue. Dynamic Pickup-Point Recommendation Based on Spatiotemporal Trajectory and Hybrid Gain Evaluation [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(7): 1611-1622. |
[9] | JIA Heming, LIU Yuxiang, LIU Qingxin, WANG Shuang, ZHENG Rong. Hybrid Algorithm of Slime Mould Algorithm and Arithmetic Optimization Algorithm Based on Random Opposition-Based Learning [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(5): 1182-1192. |
[10] | LIU Liqun, GU Renyuan. Shuffled Frog Leaping Algorithm Driven by Nuclear Center and Its Application [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(5): 1169-1181. |
[11] | LIU Yu, MENG Min, WU Jigang. Semi-supervised Multi-view Classification via Consistency Constraints [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(1): 242-252. |
[12] | GAO Chun1,2,3+, WANG Ruizhi1,2,3. The Formation of Minimal Skill Set in Disjunctive Model of Knowledge Space Theory [J]. Journal of Frontiers of Computer Science and Technology, 2010, 4(12): 1109-1114. |
[13] | REN Jiadong1,2, ZHOU Weiwei1+, HE Haitao1. Adaptive Clustering Algorithm for Mining Subspace Clusters in High-Dimensio¬nal Data Stream* [J]. Journal of Frontiers of Computer Science and Technology, 2010, 4(9): 859-864. |
[14] | HAN Min, TANG Changjie+, DUAN Lei, LI Chuan, GONG Jie. TF-IDF Similarity Based Method for Tag Clustering [J]. Journal of Frontiers of Computer Science and Technology, 2010, 4(3): 240-246. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/