Journal of Frontiers of Computer Science and Technology ›› 2022, Vol. 16 ›› Issue (11): 2628-2641.DOI: 10.3778/j.issn.1673-9418.2104105
• Theory and Algorithm • Previous Articles Next Articles
Received:
2021-04-29
Revised:
2021-07-02
Online:
2022-11-01
Published:
2021-07-15
About author:
CHEN Lan, born in 1995, M.S. candidate. Her re-search interest is intelligent information processing.Supported by:
通讯作者:
+ E-mail: wanglg@gsau.edu.cn作者简介:
陈兰(1995—),女,甘肃临洮人,硕士研究生,主要研究方向为智能信息处理。基金资助:
CLC Number:
CHEN Lan, WANG Lianguo. Extreme Individual Guided Artificial Bee Colony Algorithm[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(11): 2628-2641.
陈兰, 王联国. 极值个体引导的人工蜂群算法[J]. 计算机科学与探索, 2022, 16(11): 2628-2641.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2104105
Function | Function name | D | C | Searching space | Function expression | |
---|---|---|---|---|---|---|
Sphere | 30 | US | [-100,100] | |||
Elliptic | 30 | UN | [-100,100] | |||
SumSquares | 30 | US | [-10,10] | |||
SumPower | 30 | MS | [-10,10] | |||
Schwefel2.22 | 30 | UN | [-10,10] | |||
Schwefel2.21 | 30 | UN | [-100,100] | |||
Step | 30 | US | [-100,100] | |||
Quartic | 30 | US | [-1.28,1.28] | |||
QuarticWN | 30 | US | [-1.28,1.28] | |||
Rosebrock | 30 | UN | [-10,10] | |||
Rastrigin | 30 | MS | [-5.12,5.12] | |||
Non_Continuous Rastrigin | 30 | MS | [-5.12,5.12] | |||
Griewank | 30 | MN | [-600,600] | |||
Schwefel2.26 | 30 | UN | [-500,500] | |||
Ackley | 30 | MN | [-32,32] | |||
Penalized1 | 30 | MN | [-50,50] | |||
Penalized2 | 30 | MN | [-50,50] | |||
Alpine | 30 | MS | [-10,10] | |||
Levy | 30 | MN | [-10,10] | |||
Weierstrass | 30 | MN | [-0.5,0.5] | |||
Schaffer | 30 | MN | [-100,100] | |||
Himmelblau | 30 | MS | [-5,5] | |||
Michalewicz | 30 | MS | [0,π] | |||
Shifted_Sphere | 30 | US | [-100,100] | |||
Function | Function name | D | C | Searching space | Function expression | |
Shifted_Rastrigin | 30 | MS | [-5.12,5.12] | |||
Shifted_Griewank | 30 | MN | [-600,600] | |||
Shifted_Ackley | 30 | MN | [-32,32] | |||
Shifted_Alpine | 30 | MN | [-10,10] |
Table 1 Parameters of 28 standard test functions
Function | Function name | D | C | Searching space | Function expression | |
---|---|---|---|---|---|---|
Sphere | 30 | US | [-100,100] | |||
Elliptic | 30 | UN | [-100,100] | |||
SumSquares | 30 | US | [-10,10] | |||
SumPower | 30 | MS | [-10,10] | |||
Schwefel2.22 | 30 | UN | [-10,10] | |||
Schwefel2.21 | 30 | UN | [-100,100] | |||
Step | 30 | US | [-100,100] | |||
Quartic | 30 | US | [-1.28,1.28] | |||
QuarticWN | 30 | US | [-1.28,1.28] | |||
Rosebrock | 30 | UN | [-10,10] | |||
Rastrigin | 30 | MS | [-5.12,5.12] | |||
Non_Continuous Rastrigin | 30 | MS | [-5.12,5.12] | |||
Griewank | 30 | MN | [-600,600] | |||
Schwefel2.26 | 30 | UN | [-500,500] | |||
Ackley | 30 | MN | [-32,32] | |||
Penalized1 | 30 | MN | [-50,50] | |||
Penalized2 | 30 | MN | [-50,50] | |||
Alpine | 30 | MS | [-10,10] | |||
Levy | 30 | MN | [-10,10] | |||
Weierstrass | 30 | MN | [-0.5,0.5] | |||
Schaffer | 30 | MN | [-100,100] | |||
Himmelblau | 30 | MS | [-5,5] | |||
Michalewicz | 30 | MS | [0,π] | |||
Shifted_Sphere | 30 | US | [-100,100] | |||
Function | Function name | D | C | Searching space | Function expression | |
Shifted_Rastrigin | 30 | MS | [-5.12,5.12] | |||
Shifted_Griewank | 30 | MN | [-600,600] | |||
Shifted_Ackley | 30 | MN | [-32,32] | |||
Shifted_Alpine | 30 | MN | [-10,10] |
Function | Algorithm | The worst value | Optimal value | Average optimal value | Standard deviation | Average running time/s |
---|---|---|---|---|---|---|
ABC | 1.251 4E-016 | 1.251 4E-017 | 8.710 8E-017 | 2.806 4E-017 | 0.028 7 | |
EABC | 4.107 4E-118 | 2.752 4E-121 | 6.086 2E-119 | 9.813 2E-119 | 0.021 3 | |
ABC | 1.405 4E-016 | 4.605 3E-017 | 9.196 0E-017 | 3.008 0E-017 | 0.328 0 | |
EABC | 1.237 7E-114 | 6.297 8E-118 | 9.041 5E-116 | 2.311 8E-115 | 0.331 1 | |
ABC | 1.332 5E-016 | 4.579 0E-017 | 8.331 8E-017 | 2.789 2E-017 | 0.028 9 | |
EABC | 7.500 9E-119 | 5.381 9E-122 | 7.332 3E-120 | 1.475 3E-119 | 0.032 4 | |
ABC | 9.285 9E-018 | 2.443 5E-018 | 5.656 9E-018 | 2.106 9E-018 | 0.369 1 | |
EABC | 2.637 4E-047 | 6.695 1E-079 | 8.791 4E-049 | 4.734 3E-048 | 0.384 6 | |
ABC | 3.448 9E-016 | 1.920 4E-016 | 2.497 6E-016 | 3.828 5E-017 | 0.187 4 | |
EABC | 2.402 5E-060 | 1.066 4E-062 | 2.920 6E-061 | 4.225 7E-061 | 0.160 7 | |
ABC | 1.089 4E-001 | 1.647 5E-002 | 5.440 0E-002 | 2.169 1E-002 | 0.085 0 | |
EABC | 7.262 9E+000 | 3.160 0E+000 | 5.011 3E+000 | 8.501 2E-001 | 0.093 4 | |
ABC | 1.336 9E-016 | 5.618 4E-017 | 9.417 8E-017 | 2.841 7E-017 | 0.028 6 | |
EABC | 0 | 0 | 0 | 0 | 0.039 4 | |
ABC | 2.332 1E-017 | 9.192 5E-018 | 1.481 3E-017 | 3.050 3E-018 | 0.030 2 | |
EABC | 9.110 7E-238 | 1.676 0E-244 | 6.633 0E-239 | 0 | 0.044 1 | |
ABC | 6.688 5E-002 | 2.047 8E-002 | 4.648 1E-002 | 1.180 2E-002 | 0.031 9 | |
EABC | 3.054 4E-002 | 7.575 2E-003 | 1.969 7E-002 | 5.576 0E-003 | 0.044 8 | |
ABC | 8.707 8E+000 | 2.227 4E-004 | 1.402 5E-001 | 2.357 1E-001 | 1.344 0 | |
EABC | 7.413 6E+000 | 1.077 9E-004 | 2.698 0E-001 | 1.327 4E+000 | 0.971 8 | |
ABC | 0 | 0 | 0 | 0 | 0.468 9 | |
EABC | 0 | 0 | 0 | 0 | 0.471 4 | |
ABC | 0 | 0 | 0 | 0 | 0.338 6 | |
EABC | 0 | 0 | 0 | 0 | 0.297 8 | |
ABC | 1.968 9E-010 | 0 | 2.216 3E-011 | 5.255 7E-010 | 0.257 7 | |
EABC | 1.722 4E-011 | 0 | 5.825 1E-013 | 3.090 7E-012 | 0.243 0 | |
ABC | 8.661 8E-10 | 8.661 8E-010 | 8.661 8E-010 | 6.183 4E-010 | 0.300 3 | |
EABC | 5.784 3E-012 | 8.789 7E-013 | 1.432 5E-012 | 5.457 0E-013 | 0.279 6 | |
ABC | 7.694 1E-015 | 4.141 4E-015 | 6.509 9E-014 | 1.674 8E-015 | 0.226 2 | |
EABC | 3.611 5E-014 | 1.124 6E-014 | 2.048 4E-014 | 5.549 5E-015 | 0.214 4 | |
ABC | 1.391 0E-016 | 4.020 5E-017 | 9.379 2E-017 | 2.843 3E-017 | 0.470 9 | |
EABC | 1.570 4E-032 | 1.570 4E-032 | 1.570 4E-032 | 2.736 9E-048 | 0.418 8 | |
ABC | 1.298 0E-016 | 4.404 4E-017 | 8.927 4E-017 | 2.871 6E-017 | 0.460 7 | |
EABC | 1.349 6E-032 | 1.349 6E-032 | 1.349 7E-032 | 5.473 8E-048 | 0.422 0 | |
ABC | 7.261 7E-007 | 6.644 4E-016 | 2.453 2E-008 | 1.302 9E-007 | 0.268 6 | |
EABC | 1.075 0E-014 | 5.200 3E-049 | 9.708 1E-016 | 2.236 1E-015 | 0.242 0 | |
ABC | 1.554 5E-016 | 8.695 5E-017 | 1.224 5E-016 | 1.615 1E-17 | 1.324 7 | |
EABC | 2.625 5E-032 | 2.416 8E-032 | 1.216 6E-032 | 1.763 8E-048 | 1.112 6 | |
ABC | 0 | 0 | 0 | 0 | 1.009 8 | |
EABC | 0 | 0 | 0 | 0 | 0.756 8 | |
ABC | 3.960 9E-001 | 1.269 9E-001 | 3.095 5E-001 | 5.028 9E-002 | 0.051 3 | |
EABC | 3.455 9E-001 | 1.782 2E-001 | 2.679 8E-001 | 5.536 2E-002 | 0.064 6 | |
ABC | -7.738 9E+001 | -7.833 2E+001 | -7.830 1E+001 | 1.691 7E-001 | 0.656 7 | |
EABC | -7.833 2E+001 | -7.833 2E+001 | -7.833 2E+001 | 1.797 5E-014 | 0.629 0 | |
ABC | -2.859 8E+001 | -2.863 0E+001 | -2.861 8E+001 | 8.494 8E-003 | 0.875 7 | |
EABC | -2.857 0E+001 | -2.863 0E+001 | -2.861 8E+002 | 1.728 0E-002 | 0.843 0 | |
ABC | 8.474 8E-016 | 4.825 6E-017 | 6.426 4E-016 | 8.348 0E-017 | 0.186 3 | |
EABC | 0 | 0 | 0 | 0 | 0.113 3 | |
ABC | 0 | 0 | 0 | 0 | 0.303 1 | |
EABC | 0 | 0 | 0 | 0 | 0.285 0 | |
ABC | 1.876 8E-009 | 0 | 2.535 5E-010 | 5.525 5E-010 | 0.365 3 | |
EABC | 1.765 4E-011 | 0 | 5.876 9E-012 | 3.523 5E-012 | 0.252 3 | |
ABC | 7.694 1E-014 | 4.141 4E-015 | 6.809 5E-014 | 5.674 8E-015 | 0.226 2 | |
EABC | 3.611 5E-014 | 1.124 6E-014 | 2.048 4E-014 | 5.549 5E-015 | 0.214 4 | |
ABC | 8.592 2E-009 | 5.443 6E-009 | 7.289 5E-009 | 7.691 0E-010 | 0.594 7 | |
EABC | 7.867 7E-015 | 5.384 5E-016 | 6.883 8E-017 | 6.553 6E-017 | 0.291 4 |
Table 2 Experimental results of two optimization algorithms
Function | Algorithm | The worst value | Optimal value | Average optimal value | Standard deviation | Average running time/s |
---|---|---|---|---|---|---|
ABC | 1.251 4E-016 | 1.251 4E-017 | 8.710 8E-017 | 2.806 4E-017 | 0.028 7 | |
EABC | 4.107 4E-118 | 2.752 4E-121 | 6.086 2E-119 | 9.813 2E-119 | 0.021 3 | |
ABC | 1.405 4E-016 | 4.605 3E-017 | 9.196 0E-017 | 3.008 0E-017 | 0.328 0 | |
EABC | 1.237 7E-114 | 6.297 8E-118 | 9.041 5E-116 | 2.311 8E-115 | 0.331 1 | |
ABC | 1.332 5E-016 | 4.579 0E-017 | 8.331 8E-017 | 2.789 2E-017 | 0.028 9 | |
EABC | 7.500 9E-119 | 5.381 9E-122 | 7.332 3E-120 | 1.475 3E-119 | 0.032 4 | |
ABC | 9.285 9E-018 | 2.443 5E-018 | 5.656 9E-018 | 2.106 9E-018 | 0.369 1 | |
EABC | 2.637 4E-047 | 6.695 1E-079 | 8.791 4E-049 | 4.734 3E-048 | 0.384 6 | |
ABC | 3.448 9E-016 | 1.920 4E-016 | 2.497 6E-016 | 3.828 5E-017 | 0.187 4 | |
EABC | 2.402 5E-060 | 1.066 4E-062 | 2.920 6E-061 | 4.225 7E-061 | 0.160 7 | |
ABC | 1.089 4E-001 | 1.647 5E-002 | 5.440 0E-002 | 2.169 1E-002 | 0.085 0 | |
EABC | 7.262 9E+000 | 3.160 0E+000 | 5.011 3E+000 | 8.501 2E-001 | 0.093 4 | |
ABC | 1.336 9E-016 | 5.618 4E-017 | 9.417 8E-017 | 2.841 7E-017 | 0.028 6 | |
EABC | 0 | 0 | 0 | 0 | 0.039 4 | |
ABC | 2.332 1E-017 | 9.192 5E-018 | 1.481 3E-017 | 3.050 3E-018 | 0.030 2 | |
EABC | 9.110 7E-238 | 1.676 0E-244 | 6.633 0E-239 | 0 | 0.044 1 | |
ABC | 6.688 5E-002 | 2.047 8E-002 | 4.648 1E-002 | 1.180 2E-002 | 0.031 9 | |
EABC | 3.054 4E-002 | 7.575 2E-003 | 1.969 7E-002 | 5.576 0E-003 | 0.044 8 | |
ABC | 8.707 8E+000 | 2.227 4E-004 | 1.402 5E-001 | 2.357 1E-001 | 1.344 0 | |
EABC | 7.413 6E+000 | 1.077 9E-004 | 2.698 0E-001 | 1.327 4E+000 | 0.971 8 | |
ABC | 0 | 0 | 0 | 0 | 0.468 9 | |
EABC | 0 | 0 | 0 | 0 | 0.471 4 | |
ABC | 0 | 0 | 0 | 0 | 0.338 6 | |
EABC | 0 | 0 | 0 | 0 | 0.297 8 | |
ABC | 1.968 9E-010 | 0 | 2.216 3E-011 | 5.255 7E-010 | 0.257 7 | |
EABC | 1.722 4E-011 | 0 | 5.825 1E-013 | 3.090 7E-012 | 0.243 0 | |
ABC | 8.661 8E-10 | 8.661 8E-010 | 8.661 8E-010 | 6.183 4E-010 | 0.300 3 | |
EABC | 5.784 3E-012 | 8.789 7E-013 | 1.432 5E-012 | 5.457 0E-013 | 0.279 6 | |
ABC | 7.694 1E-015 | 4.141 4E-015 | 6.509 9E-014 | 1.674 8E-015 | 0.226 2 | |
EABC | 3.611 5E-014 | 1.124 6E-014 | 2.048 4E-014 | 5.549 5E-015 | 0.214 4 | |
ABC | 1.391 0E-016 | 4.020 5E-017 | 9.379 2E-017 | 2.843 3E-017 | 0.470 9 | |
EABC | 1.570 4E-032 | 1.570 4E-032 | 1.570 4E-032 | 2.736 9E-048 | 0.418 8 | |
ABC | 1.298 0E-016 | 4.404 4E-017 | 8.927 4E-017 | 2.871 6E-017 | 0.460 7 | |
EABC | 1.349 6E-032 | 1.349 6E-032 | 1.349 7E-032 | 5.473 8E-048 | 0.422 0 | |
ABC | 7.261 7E-007 | 6.644 4E-016 | 2.453 2E-008 | 1.302 9E-007 | 0.268 6 | |
EABC | 1.075 0E-014 | 5.200 3E-049 | 9.708 1E-016 | 2.236 1E-015 | 0.242 0 | |
ABC | 1.554 5E-016 | 8.695 5E-017 | 1.224 5E-016 | 1.615 1E-17 | 1.324 7 | |
EABC | 2.625 5E-032 | 2.416 8E-032 | 1.216 6E-032 | 1.763 8E-048 | 1.112 6 | |
ABC | 0 | 0 | 0 | 0 | 1.009 8 | |
EABC | 0 | 0 | 0 | 0 | 0.756 8 | |
ABC | 3.960 9E-001 | 1.269 9E-001 | 3.095 5E-001 | 5.028 9E-002 | 0.051 3 | |
EABC | 3.455 9E-001 | 1.782 2E-001 | 2.679 8E-001 | 5.536 2E-002 | 0.064 6 | |
ABC | -7.738 9E+001 | -7.833 2E+001 | -7.830 1E+001 | 1.691 7E-001 | 0.656 7 | |
EABC | -7.833 2E+001 | -7.833 2E+001 | -7.833 2E+001 | 1.797 5E-014 | 0.629 0 | |
ABC | -2.859 8E+001 | -2.863 0E+001 | -2.861 8E+001 | 8.494 8E-003 | 0.875 7 | |
EABC | -2.857 0E+001 | -2.863 0E+001 | -2.861 8E+002 | 1.728 0E-002 | 0.843 0 | |
ABC | 8.474 8E-016 | 4.825 6E-017 | 6.426 4E-016 | 8.348 0E-017 | 0.186 3 | |
EABC | 0 | 0 | 0 | 0 | 0.113 3 | |
ABC | 0 | 0 | 0 | 0 | 0.303 1 | |
EABC | 0 | 0 | 0 | 0 | 0.285 0 | |
ABC | 1.876 8E-009 | 0 | 2.535 5E-010 | 5.525 5E-010 | 0.365 3 | |
EABC | 1.765 4E-011 | 0 | 5.876 9E-012 | 3.523 5E-012 | 0.252 3 | |
ABC | 7.694 1E-014 | 4.141 4E-015 | 6.809 5E-014 | 5.674 8E-015 | 0.226 2 | |
EABC | 3.611 5E-014 | 1.124 6E-014 | 2.048 4E-014 | 5.549 5E-015 | 0.214 4 | |
ABC | 8.592 2E-009 | 5.443 6E-009 | 7.289 5E-009 | 7.691 0E-010 | 0.594 7 | |
EABC | 7.867 7E-015 | 5.384 5E-016 | 6.883 8E-017 | 6.553 6E-017 | 0.291 4 |
Function | ABC | EABC | ||||
---|---|---|---|---|---|---|
Average optimal value | Standard deviation | Average running time/s | Average optimal value | Standard deviation | Average running time/s | |
3.351 8E-016 | 3.342 4E-017 | 0.039 3 | 3.983 8E-055 | 3.838 4E-055 | 0.043 3 | |
3.724 2E-016 | 5.172 9E-017 | 0.608 3 | 7.480 3E-052 | 1.372 4E-052 | 0.555 5 | |
3.371 8E-016 | 4.722 6E-017 | 0.039 5 | 2.029 2E-055 | 3.039 2E-055 | 0.044 2 | |
3.516 1E-017 | 1.841 0E-017 | 0.645 8 | 6.108 8E-030 | 3.129 8E-029 | 0.592 7 | |
1.463 8E-015 | 1.016 2E-016 | 0.262 4 | 1.239 7E-028 | 1.178 9E-028 | 0.211 9 | |
1.169 8E+001 | 1.635 5E+000 | 0.138 0 | 1.532 1E+001 | 1.902 4E+000 | 0.137 9 | |
3.371 6E-016 | 5.412 8E-017 | 0.039 1 | 0 | 0 | 0.024 6 | |
1.204 4E-016 | 2.229 9E-017 | 0.042 0 | 1.009 7E-113 | 1.611 8E-113 | 0.051 1 | |
1.894 1E-001 | 3.440 0E-002 | 0.046 5 | 9.453 8E-002 | 1.785 8E-002 | 0.052 0 | |
2.468 1E-001 | 4.482 5E-001 | 1.821 2 | 1.041 8E+001 | 2.458 3E+001 | 2.024 9 | |
2.486 9E-015 | 1.339 2E-014 | 1.028 5 | 6.633 1E-002 | 2.481 9E-001 | 1.024 7 | |
0 | 0 | 0.617 0 | 0 | 0 | 0.591 3 | |
2.465 4E-004 | 1.327 6E-003 | 0.477 3 | 2.465 4E-004 | 1.327 6E-003 | 0.400 8 | |
3.149 2E+001 | 5.240 2E+001 | 0.572 7 | 1.642 9E-001 | 4.817 6E-002 | 0.545 0 | |
4.724 8E-014 | 5.709 0E-015 | 0.424 6 | 3.587 9E-014 | 7.277 0E-015 | 0.412 1 | |
3.148 0E-016 | 5.657 5E-017 | 0.871 8 | 7.852 2E-033 | 1.368 5E-048 | 0.845 1 | |
3.393 1E-016 | 5.511 1E-017 | 1.008 5 | 1.349 7E-032 | 5.473 8E-048 | 0.965 0 | |
2.093 1E-005 | 2.894 1E-005 | 0.498 0 | 2.723 7E-007 | 7.691 1E-007 | 0.424 1 | |
2.640 6E+003 | 3.220 6E+002 | 2.442 7 | 2.613 0E+003 | 2.371 4E+002 | 2.176 6 | |
0 | 0 | 1.194 1 | 0 | 0 | 0.900 7 | |
4.877 7E-001 | 5.149 7E-003 | 0.065 2 | 4.702 7E-001 | 1.556 0E-002 | 0.056 7 | |
-7.833 2E+001 | 1.397 2E-014 | 1.261 8 | -7.833 2E+001 | 1.244 3E-014 | 1.176 5 | |
-5.829 6E+001 | 7.890 6E-002 | 2.814 6 | -5.849 7E+001 | 3.908 6E-002 | 1.824 7 | |
1.496 6E-015 | 1.053 5E-016 | 0.131 3 | 1.486 7E-055 | 1.169 6E-054 | 0.128 8 | |
0 | 0 | 0.594 1 | 0 | 0 | 0.500 7 | |
1.548 9E-003 | 8.350 9E-004 | 0.700 0 | 1.503 3E-003 | 8.564 2E-005 | 0.643 8 | |
1.994 8E-014 | 9.566 1E-014 | 0.498 5 | 1.906 0E-014 | 5.965 4E-015 | 0.520 9 | |
1.583 7E-005 | 1.108 5E-005 | 0.553 1 | 1.565 9E-007 | 1.261 3E-008 | 0.533 0 |
Table 3 Experimental results of ABC and EABC ( D = 60 )
Function | ABC | EABC | ||||
---|---|---|---|---|---|---|
Average optimal value | Standard deviation | Average running time/s | Average optimal value | Standard deviation | Average running time/s | |
3.351 8E-016 | 3.342 4E-017 | 0.039 3 | 3.983 8E-055 | 3.838 4E-055 | 0.043 3 | |
3.724 2E-016 | 5.172 9E-017 | 0.608 3 | 7.480 3E-052 | 1.372 4E-052 | 0.555 5 | |
3.371 8E-016 | 4.722 6E-017 | 0.039 5 | 2.029 2E-055 | 3.039 2E-055 | 0.044 2 | |
3.516 1E-017 | 1.841 0E-017 | 0.645 8 | 6.108 8E-030 | 3.129 8E-029 | 0.592 7 | |
1.463 8E-015 | 1.016 2E-016 | 0.262 4 | 1.239 7E-028 | 1.178 9E-028 | 0.211 9 | |
1.169 8E+001 | 1.635 5E+000 | 0.138 0 | 1.532 1E+001 | 1.902 4E+000 | 0.137 9 | |
3.371 6E-016 | 5.412 8E-017 | 0.039 1 | 0 | 0 | 0.024 6 | |
1.204 4E-016 | 2.229 9E-017 | 0.042 0 | 1.009 7E-113 | 1.611 8E-113 | 0.051 1 | |
1.894 1E-001 | 3.440 0E-002 | 0.046 5 | 9.453 8E-002 | 1.785 8E-002 | 0.052 0 | |
2.468 1E-001 | 4.482 5E-001 | 1.821 2 | 1.041 8E+001 | 2.458 3E+001 | 2.024 9 | |
2.486 9E-015 | 1.339 2E-014 | 1.028 5 | 6.633 1E-002 | 2.481 9E-001 | 1.024 7 | |
0 | 0 | 0.617 0 | 0 | 0 | 0.591 3 | |
2.465 4E-004 | 1.327 6E-003 | 0.477 3 | 2.465 4E-004 | 1.327 6E-003 | 0.400 8 | |
3.149 2E+001 | 5.240 2E+001 | 0.572 7 | 1.642 9E-001 | 4.817 6E-002 | 0.545 0 | |
4.724 8E-014 | 5.709 0E-015 | 0.424 6 | 3.587 9E-014 | 7.277 0E-015 | 0.412 1 | |
3.148 0E-016 | 5.657 5E-017 | 0.871 8 | 7.852 2E-033 | 1.368 5E-048 | 0.845 1 | |
3.393 1E-016 | 5.511 1E-017 | 1.008 5 | 1.349 7E-032 | 5.473 8E-048 | 0.965 0 | |
2.093 1E-005 | 2.894 1E-005 | 0.498 0 | 2.723 7E-007 | 7.691 1E-007 | 0.424 1 | |
2.640 6E+003 | 3.220 6E+002 | 2.442 7 | 2.613 0E+003 | 2.371 4E+002 | 2.176 6 | |
0 | 0 | 1.194 1 | 0 | 0 | 0.900 7 | |
4.877 7E-001 | 5.149 7E-003 | 0.065 2 | 4.702 7E-001 | 1.556 0E-002 | 0.056 7 | |
-7.833 2E+001 | 1.397 2E-014 | 1.261 8 | -7.833 2E+001 | 1.244 3E-014 | 1.176 5 | |
-5.829 6E+001 | 7.890 6E-002 | 2.814 6 | -5.849 7E+001 | 3.908 6E-002 | 1.824 7 | |
1.496 6E-015 | 1.053 5E-016 | 0.131 3 | 1.486 7E-055 | 1.169 6E-054 | 0.128 8 | |
0 | 0 | 0.594 1 | 0 | 0 | 0.500 7 | |
1.548 9E-003 | 8.350 9E-004 | 0.700 0 | 1.503 3E-003 | 8.564 2E-005 | 0.643 8 | |
1.994 8E-014 | 9.566 1E-014 | 0.498 5 | 1.906 0E-014 | 5.965 4E-015 | 0.520 9 | |
1.583 7E-005 | 1.108 5E-005 | 0.553 1 | 1.565 9E-007 | 1.261 3E-008 | 0.533 0 |
Function | ABC | EABC | ||||
---|---|---|---|---|---|---|
Average optimal value | Standard deviation | Average running time/s | Average optimal value | Standard deviation | Average running time/s | |
1.737 2E-015 | 1.870 7E-016 | 0.056 9 | 5.109 5E-030 | 5.727 5E-030 | 0.074 1 | |
3.589 0E-012 | 7.980 5E-012 | 1.043 2 | 1.829 4E-026 | 2.198 1E-026 | 1.005 5 | |
1.576 3E-015 | 1.742 7E-016 | 0.059 7 | 2.528 0E-030 | 2.508 0E-030 | 0.070 0 | |
1.250 6E-007 | 2.671 9E-007 | 1.207 3 | 5.621 0E-022 | 1.067 4E-021 | 1.073 0 | |
4.441 6E-010 | 3.857 4E-010 | 0.682 9 | 6.158 2E-016 | 1.865 3E-016 | 0.421 0 | |
4.055 6E+001 | 2.886 1E+000 | 0.231 4 | 3.010 8E+001 | 2.252 8E+000 | 0.227 6 | |
1.694 6E-015 | 2.169 0E-016 | 0.059 4 | 0 | 0 | 0.070 7 | |
2.952 0E-016 | 5.553 5E-017 | 0.063 4 | 3.552 2E-063 | 1.550 3E-062 | 0.073 9 | |
4.675 8E-001 | 7.989 0E-002 | 0.073 0 | 2.673 4E-001 | 3.147 9E-002 | 0.081 6 | |
5.271 1E+000 | 1.696 1E+001 | 3.012 6 | 3.854 0E+001 | 4.619 5E+001 | 3.103 4 | |
1.994 4E-001 | 4.735 1E-001 | 1.581 3 | 2.695 3E-001 | 5.078 1E-001 | 1.547 7 | |
0 | 0 | 0.965 0 | 0 | 0 | 0.946 1 | |
1.134 1E-003 | 4.274 4E-003 | 0.747 3 | 5.682 8E-004 | 1.869 1E-003 | 0.701 3 | |
7.434 5E+002 | 2.809 7E+002 | 0.829 7 | 1.344 2E+002 | 9.612 8E+001 | 0.847 7 | |
7.384 4E-009 | 6.387 5E-009 | 0.618 7 | 1.329 9E-013 | 4.859 9E-014 | 0.637 9 | |
1.204 1E-015 | 1.161 5E-016 | 1.356 0 | 6.359 6E-032 | 4.714 8E-032 | 1.332 0 | |
1.759 2E-015 | 7.969 9E-016 | 1.339 6 | 2.235 9E-030 | 2.082 6E-030 | 1.321 8 | |
5.720 8E-003 | 6.563 2E-003 | 0.743 1 | 3.559 5E-004 | 1.465 4E-003 | 0.740 5 | |
4.582 2E+003 | 3.893 6E+002 | 3.553 3 | 4.687 2E+003 | 3.830 5E+002 | 3.534 3 | |
0 | 0 | 1.294 1 | 0 | 0 | 1.103 2 | |
4.996 1E-001 | 1.571 0E-004 | 0.074 5 | 4.983 0E-001 | 4.693 1E-004 | 0.090 7 | |
-7.832 3E+001 | 5.075 2E-002 | 1.972 6 | -7.833 2E+001 | 1.216 9E-014 | 1.958 3 | |
-9.697 3E+001 | 2.763 5E-001 | 2.617 6 | -9.754 4E+001 | 1.276 4E-001 | 2.604 5 | |
2.694 0E-015 | 1.513 6E-014 | 0.153 1 | 2.685 0E-015 | 1.019 5E-014 | 0.167 8 | |
0 | 0 | 1.088 7 | 0 | 0 | 1.290 5 | |
3.262 0E-003 | 1.271 6E-003 | 0.969 2 | 3.216 9E-003 | 1.586 7E-004 | 0.006 9 | |
1.995 2E-010 | 7.666 0E-010 | 0.721 2 | 1.996 3E-010 | 6.247 5E-011 | 0.722 1 | |
8.050 6E-003 | 3.397 3E-003 | 1.367 4 | 9.582 0E-004 | 9.729 6E-005 | 1.392 6 |
Table 4 Experimental results of ABC and EABC ( D = 100 )
Function | ABC | EABC | ||||
---|---|---|---|---|---|---|
Average optimal value | Standard deviation | Average running time/s | Average optimal value | Standard deviation | Average running time/s | |
1.737 2E-015 | 1.870 7E-016 | 0.056 9 | 5.109 5E-030 | 5.727 5E-030 | 0.074 1 | |
3.589 0E-012 | 7.980 5E-012 | 1.043 2 | 1.829 4E-026 | 2.198 1E-026 | 1.005 5 | |
1.576 3E-015 | 1.742 7E-016 | 0.059 7 | 2.528 0E-030 | 2.508 0E-030 | 0.070 0 | |
1.250 6E-007 | 2.671 9E-007 | 1.207 3 | 5.621 0E-022 | 1.067 4E-021 | 1.073 0 | |
4.441 6E-010 | 3.857 4E-010 | 0.682 9 | 6.158 2E-016 | 1.865 3E-016 | 0.421 0 | |
4.055 6E+001 | 2.886 1E+000 | 0.231 4 | 3.010 8E+001 | 2.252 8E+000 | 0.227 6 | |
1.694 6E-015 | 2.169 0E-016 | 0.059 4 | 0 | 0 | 0.070 7 | |
2.952 0E-016 | 5.553 5E-017 | 0.063 4 | 3.552 2E-063 | 1.550 3E-062 | 0.073 9 | |
4.675 8E-001 | 7.989 0E-002 | 0.073 0 | 2.673 4E-001 | 3.147 9E-002 | 0.081 6 | |
5.271 1E+000 | 1.696 1E+001 | 3.012 6 | 3.854 0E+001 | 4.619 5E+001 | 3.103 4 | |
1.994 4E-001 | 4.735 1E-001 | 1.581 3 | 2.695 3E-001 | 5.078 1E-001 | 1.547 7 | |
0 | 0 | 0.965 0 | 0 | 0 | 0.946 1 | |
1.134 1E-003 | 4.274 4E-003 | 0.747 3 | 5.682 8E-004 | 1.869 1E-003 | 0.701 3 | |
7.434 5E+002 | 2.809 7E+002 | 0.829 7 | 1.344 2E+002 | 9.612 8E+001 | 0.847 7 | |
7.384 4E-009 | 6.387 5E-009 | 0.618 7 | 1.329 9E-013 | 4.859 9E-014 | 0.637 9 | |
1.204 1E-015 | 1.161 5E-016 | 1.356 0 | 6.359 6E-032 | 4.714 8E-032 | 1.332 0 | |
1.759 2E-015 | 7.969 9E-016 | 1.339 6 | 2.235 9E-030 | 2.082 6E-030 | 1.321 8 | |
5.720 8E-003 | 6.563 2E-003 | 0.743 1 | 3.559 5E-004 | 1.465 4E-003 | 0.740 5 | |
4.582 2E+003 | 3.893 6E+002 | 3.553 3 | 4.687 2E+003 | 3.830 5E+002 | 3.534 3 | |
0 | 0 | 1.294 1 | 0 | 0 | 1.103 2 | |
4.996 1E-001 | 1.571 0E-004 | 0.074 5 | 4.983 0E-001 | 4.693 1E-004 | 0.090 7 | |
-7.832 3E+001 | 5.075 2E-002 | 1.972 6 | -7.833 2E+001 | 1.216 9E-014 | 1.958 3 | |
-9.697 3E+001 | 2.763 5E-001 | 2.617 6 | -9.754 4E+001 | 1.276 4E-001 | 2.604 5 | |
2.694 0E-015 | 1.513 6E-014 | 0.153 1 | 2.685 0E-015 | 1.019 5E-014 | 0.167 8 | |
0 | 0 | 1.088 7 | 0 | 0 | 1.290 5 | |
3.262 0E-003 | 1.271 6E-003 | 0.969 2 | 3.216 9E-003 | 1.586 7E-004 | 0.006 9 | |
1.995 2E-010 | 7.666 0E-010 | 0.721 2 | 1.996 3E-010 | 6.247 5E-011 | 0.722 1 | |
8.050 6E-003 | 3.397 3E-003 | 1.367 4 | 9.582 0E-004 | 9.729 6E-005 | 1.392 6 |
Function | ABC | GABC | ABCBest1 | MABC | ABCVSS | MSSABC | EABC |
---|---|---|---|---|---|---|---|
3.88E-16±8.06E-17 | 4.34E-16±7.54E-17 | 3.76E-47±6.76E-47 | 9.43E-32±6.67E-32 | 1.53E-81±8.37E-81 | 7.92E-87±1.04E-86 | 9.78E-119±1.90E-118 | |
3.32E-16±5.77E-17 | 3.12E-16±4.45E-17 | 1.30E-40±4.33E-41 | 3.66E-28±5.96E-28 | 4.82E-82±2.63E-81 | 3.40E-84±4.78E-84 | 4.93E-116±9.77E-116 | |
3.45E-16±6.25E-17 | 4.66E-16±6.64E-17 | 6.50E-48±6.04E-48 | 2.10E-32±1.56E-32 | 3.19E-89±1.48E-88 | 1.07E-87±1.90E-87 | 2.21E-119±6.71E-119 | |
2.77E-17±9.81E-18 | 1.34E-17±8.73E-18 | 1.77E-86±7.02E-86 | 2.70E-69±5.38E-69 | 5.55E-115±3.04E-114 | 3.37E-82±1.76E-81 | 1.03E-51±5.49E-51 | |
1.09E-15±1.40E-16 | 1.03E-15±1.38E-16 | 2.44E-25±2.33E-26 | 2.40E-17±9.02E-18 | 7.89E-43±4.32E-42 | 5.65E-45±7.38E-45 | 3.64E-61±3.93E-61 | |
1.76E-01±5.48E-01 | 1.33E-01±5.01E-02 | 4.43E+00±1.43E-01 | 1.02E+01±1.49E+00 | 4.08E-02±2.20E-02 | 1.77E-01±4.62E-02 | 5.25E+00±8.86E-01 | |
0.00±0.00 | 0.00±0.00 | 0.00±0.00 | 0.00±0.00 | 0.00±0.00 | 0.00±0.00 | 0.00±0.00 | |
9.52E-16±2.29E-17 | 9.88E-16±3.54E-17 | 2.53E-95±5.53E-98 | 1.45E-67±2.28E-67 | 3.25E-154±1.78E-153 | 1.94E-176±0.00 | 3.09E-238±0.00 | |
4.15E-02±5.06E-02 | 2.42E-02±3.41E-03 | 1.26E-02±3.45E-03 | 3.71E-02±8.53E-03 | 1.81E-02±5.27E-03 | 2.54E-02±7.36E-03 | 1.05E-02±5136E-03 | |
0.93±0.16 | 0.40±0.13 | 13.30±23.10 | 0.61±0.45 | 0.38±1.54 | 3.27±12.20 | 1.42±2.44 | |
0.00±0.00 | 0.00±0.00 | 0.00±0.00 | 0.00±0.00 | 0.00±0.00 | 0.00±0.00 | 0.00±0.00 | |
0.00±0.00 | 0.00±0.00 | 0.00±0.00 | 0.00±0.00 | 0.00±0.00 | 0.00±0.00 | 0.00±0.00 | |
2.22E-11±4.44E-10 | 3.46E-15±5.66E-15 | 0.00±0.00 | 0.00±0.00 | 0.00±0.00 | 2.46E-04±1.32E-03 | 0.00±0.00 | |
1.17E-10±3.55E-09 | 7.57E-01±5.66E-01 | 4.22E-10±8.12E-11 | 1.21E-13±4.53E-13 | 4.85E-13±8.18E-13 | 7.41E+00±2.79E+01 | 3.86E+00±2.12E+01 | |
2.97E-14±2.32E-15 | 2.91E-14±3.36E-15 | 3.11E-14±2.21E-13 | 4.12E-14±2.17E-15 | 2.45E-14±4.00E-15 | 3.07E-14±2.71E-15 | 1.98E-14±4.55E-15 | |
5.34E-16±6.43E-17 | 4.44E-16±8.53E-17 | 1.47E-32±4.13E-48 | 1.90E-32±3.70E-33 | 1.57E-32±5.57E-48 | 1.57E-32±2.73E-48 | 1.57E-32±2.73E-48 | |
3.76E-16±8.58E-17 | 4.66E-16±7.21E-17 | 1.42E-32±5.98E-48 | 2.23E-31±1.46E-31 | 1.35E-32±5.57E-48 | 1.34E-32±5.47E-48 | 1.34E-32±5.47E-48 | |
2.71E-08±9.78E-08 | 1.47E-09±1.43E-07 | 3.34E-16±8.43E-16 | 1.58E-16±2.48E-16 | 3.66E-44±1.93E-43 | 1.49E-06±3.02E-06 | 7.44E-14±3.99E-13 | |
4.45E-14±8.76E-13 | 3.45E-15±5.63E-16 | 1.35E-31±6.68E-47 | 1.48E-31±2.30E-32 | 1.35E-31±6.68E-47 | 3.28E-31±1.76E-31 | 1.25E-32±2.30E-32 | |
0.00±0.00 | 0.00±0.00 | 4.74E-16±1.80E-15 | 0.00±0.00 | 0.00±0.00 | 0.00±0.00 | 0.00±0.00 | |
2.50E-01±5.47E-02 | 2.47E-01±6.65E-02 | 2.52E-01±6.76E-02 | 2.95E-01±3.17E-03 | 2.84E-01±5.69E-02 | 2.65E-01±4.53E-02 | 2.59E-01±4.58E-02 | |
-7.83E+01±1.56E-1 | -7.83E+01±3.50E-14 | -7.83E+01±6.45E-01 | -7.83E+01±3.17E-07 | -7.83E+01±3.02E-10 | -7.83E+01±3.06E-14 | -7.83E+01±1.51E-14 | |
-3.45E+01±4.48E-01 | -3.44E+01±4.59E-02 | -2.45E+01±3.42E-01 | -9.07E+01±5.03E-01 | -9.94E+01±8.84E-02 | -2.85E+01±7.94E-02 | -2.86E+01±1.16E-02 | |
4.34E-16±8.34E-17 | 3.91E-16±8.32E-17 | 0.00±0.00 | 0.00±0.00 | 0.00±0.00 | 0.00±0.00 | 0.00±0.00 | |
0.00±0.00 | 0.00±0.00 | 0.00±0.00 | 0.00±0.00 | 0.00±0.00 | 0.00±0.00 | 0.00±0.00 | |
2.65E-13±4.90E-12 | 3.01E-15±5.42E-15 | 6.76E-16±8.80E-15 | 0.00±0.00 | 0.00±0.00 | 0.00±0.00 | 0.00±0.00 | |
3.90E-14±2.35E-15 | 8.43E-14±8.80E-15 | 3.84E-14±1.43E-15 | 4.89E-14±8.12E-15 | 2.41E-14±7.90E-15 | 2.41E-14±1.78E-14 | 1.00E-16±4.02E-17 | |
1.89E-07±3.56E-07 | 6.34E-05±2.35E-05 | 5.89E-16±3.56E-16 | 9.38E-16±4.11E-16 | 7.67E-17±1.43E-16 | 5.45E-17±3.90E-16 | 1.02E-18±1.68E-14 |
Table 5 Performance comparison of EABC with improved algorithms for ABC(Ave±Std)
Function | ABC | GABC | ABCBest1 | MABC | ABCVSS | MSSABC | EABC |
---|---|---|---|---|---|---|---|
3.88E-16±8.06E-17 | 4.34E-16±7.54E-17 | 3.76E-47±6.76E-47 | 9.43E-32±6.67E-32 | 1.53E-81±8.37E-81 | 7.92E-87±1.04E-86 | 9.78E-119±1.90E-118 | |
3.32E-16±5.77E-17 | 3.12E-16±4.45E-17 | 1.30E-40±4.33E-41 | 3.66E-28±5.96E-28 | 4.82E-82±2.63E-81 | 3.40E-84±4.78E-84 | 4.93E-116±9.77E-116 | |
3.45E-16±6.25E-17 | 4.66E-16±6.64E-17 | 6.50E-48±6.04E-48 | 2.10E-32±1.56E-32 | 3.19E-89±1.48E-88 | 1.07E-87±1.90E-87 | 2.21E-119±6.71E-119 | |
2.77E-17±9.81E-18 | 1.34E-17±8.73E-18 | 1.77E-86±7.02E-86 | 2.70E-69±5.38E-69 | 5.55E-115±3.04E-114 | 3.37E-82±1.76E-81 | 1.03E-51±5.49E-51 | |
1.09E-15±1.40E-16 | 1.03E-15±1.38E-16 | 2.44E-25±2.33E-26 | 2.40E-17±9.02E-18 | 7.89E-43±4.32E-42 | 5.65E-45±7.38E-45 | 3.64E-61±3.93E-61 | |
1.76E-01±5.48E-01 | 1.33E-01±5.01E-02 | 4.43E+00±1.43E-01 | 1.02E+01±1.49E+00 | 4.08E-02±2.20E-02 | 1.77E-01±4.62E-02 | 5.25E+00±8.86E-01 | |
0.00±0.00 | 0.00±0.00 | 0.00±0.00 | 0.00±0.00 | 0.00±0.00 | 0.00±0.00 | 0.00±0.00 | |
9.52E-16±2.29E-17 | 9.88E-16±3.54E-17 | 2.53E-95±5.53E-98 | 1.45E-67±2.28E-67 | 3.25E-154±1.78E-153 | 1.94E-176±0.00 | 3.09E-238±0.00 | |
4.15E-02±5.06E-02 | 2.42E-02±3.41E-03 | 1.26E-02±3.45E-03 | 3.71E-02±8.53E-03 | 1.81E-02±5.27E-03 | 2.54E-02±7.36E-03 | 1.05E-02±5136E-03 | |
0.93±0.16 | 0.40±0.13 | 13.30±23.10 | 0.61±0.45 | 0.38±1.54 | 3.27±12.20 | 1.42±2.44 | |
0.00±0.00 | 0.00±0.00 | 0.00±0.00 | 0.00±0.00 | 0.00±0.00 | 0.00±0.00 | 0.00±0.00 | |
0.00±0.00 | 0.00±0.00 | 0.00±0.00 | 0.00±0.00 | 0.00±0.00 | 0.00±0.00 | 0.00±0.00 | |
2.22E-11±4.44E-10 | 3.46E-15±5.66E-15 | 0.00±0.00 | 0.00±0.00 | 0.00±0.00 | 2.46E-04±1.32E-03 | 0.00±0.00 | |
1.17E-10±3.55E-09 | 7.57E-01±5.66E-01 | 4.22E-10±8.12E-11 | 1.21E-13±4.53E-13 | 4.85E-13±8.18E-13 | 7.41E+00±2.79E+01 | 3.86E+00±2.12E+01 | |
2.97E-14±2.32E-15 | 2.91E-14±3.36E-15 | 3.11E-14±2.21E-13 | 4.12E-14±2.17E-15 | 2.45E-14±4.00E-15 | 3.07E-14±2.71E-15 | 1.98E-14±4.55E-15 | |
5.34E-16±6.43E-17 | 4.44E-16±8.53E-17 | 1.47E-32±4.13E-48 | 1.90E-32±3.70E-33 | 1.57E-32±5.57E-48 | 1.57E-32±2.73E-48 | 1.57E-32±2.73E-48 | |
3.76E-16±8.58E-17 | 4.66E-16±7.21E-17 | 1.42E-32±5.98E-48 | 2.23E-31±1.46E-31 | 1.35E-32±5.57E-48 | 1.34E-32±5.47E-48 | 1.34E-32±5.47E-48 | |
2.71E-08±9.78E-08 | 1.47E-09±1.43E-07 | 3.34E-16±8.43E-16 | 1.58E-16±2.48E-16 | 3.66E-44±1.93E-43 | 1.49E-06±3.02E-06 | 7.44E-14±3.99E-13 | |
4.45E-14±8.76E-13 | 3.45E-15±5.63E-16 | 1.35E-31±6.68E-47 | 1.48E-31±2.30E-32 | 1.35E-31±6.68E-47 | 3.28E-31±1.76E-31 | 1.25E-32±2.30E-32 | |
0.00±0.00 | 0.00±0.00 | 4.74E-16±1.80E-15 | 0.00±0.00 | 0.00±0.00 | 0.00±0.00 | 0.00±0.00 | |
2.50E-01±5.47E-02 | 2.47E-01±6.65E-02 | 2.52E-01±6.76E-02 | 2.95E-01±3.17E-03 | 2.84E-01±5.69E-02 | 2.65E-01±4.53E-02 | 2.59E-01±4.58E-02 | |
-7.83E+01±1.56E-1 | -7.83E+01±3.50E-14 | -7.83E+01±6.45E-01 | -7.83E+01±3.17E-07 | -7.83E+01±3.02E-10 | -7.83E+01±3.06E-14 | -7.83E+01±1.51E-14 | |
-3.45E+01±4.48E-01 | -3.44E+01±4.59E-02 | -2.45E+01±3.42E-01 | -9.07E+01±5.03E-01 | -9.94E+01±8.84E-02 | -2.85E+01±7.94E-02 | -2.86E+01±1.16E-02 | |
4.34E-16±8.34E-17 | 3.91E-16±8.32E-17 | 0.00±0.00 | 0.00±0.00 | 0.00±0.00 | 0.00±0.00 | 0.00±0.00 | |
0.00±0.00 | 0.00±0.00 | 0.00±0.00 | 0.00±0.00 | 0.00±0.00 | 0.00±0.00 | 0.00±0.00 | |
2.65E-13±4.90E-12 | 3.01E-15±5.42E-15 | 6.76E-16±8.80E-15 | 0.00±0.00 | 0.00±0.00 | 0.00±0.00 | 0.00±0.00 | |
3.90E-14±2.35E-15 | 8.43E-14±8.80E-15 | 3.84E-14±1.43E-15 | 4.89E-14±8.12E-15 | 2.41E-14±7.90E-15 | 2.41E-14±1.78E-14 | 1.00E-16±4.02E-17 | |
1.89E-07±3.56E-07 | 6.34E-05±2.35E-05 | 5.89E-16±3.56E-16 | 9.38E-16±4.11E-16 | 7.67E-17±1.43E-16 | 5.45E-17±3.90E-16 | 1.02E-18±1.68E-14 |
[1] |
周蓉, 李俊, 王浩. 基于灰狼优化的反向学习粒子群算法[J]. 计算机工程与应用, 2020, 56(7): 48-56.
DOI |
ZHOU R, LI J, WANG H. Reverse learning particle swarm optimization based on grey wolf optimization[J]. Computer Engineering and Applications, 2020, 56(7): 48-56.
DOI |
|
[2] |
史春天, 曾艳阳, 侯守明. 群体智能算法在图像分割中的应用综述[J]. 计算机工程与应用, 2021, 57(8): 36-47.
DOI |
SHI C T, ZENG Y Y, HOU S M. Summary of application of swarm intelligence algorithms in image segmentation[J]. Computer Engineering and Applications, 2021, 57(8): 36-47.
DOI |
|
[3] | 傅文渊. 具有万有引力加速机理的布谷鸟搜索算法[J]. 软件学报, 2021, 32(5): 1480-1494. |
FU W Y. Cuckoo search algorithm with gravitational accele-ration mechanism[J]. Journal of Software, 2021, 32(5): 1480-1494. | |
[4] |
张孟健, 王德光, 汪敏, 等. 求解工程约束问题的新型智能优化算法及展望[J]. 计算机应用, 2022, 42(2): 534-541.
DOI |
ZHANG M J, WANG D G, WANG M, et al. Several novel intelligent optimization algorithms for solving constrained engineering problems and their prospects[J]. Journal of Computer Applications, 2022, 42(2): 534-541.
DOI |
|
[5] | KARABOGA D. An idea based on honey bee swarm for nu-merical optimization[R]. Turkey: Erciyes University, 2005. |
[6] | 刘渝根, 陈超. 基于人工蜂群算法优化支持向量机的接地网腐蚀速率预测模型[J]. 电力自动化设备, 2019, 39(5): 182-186. |
LIU Y G, CHEN C. Corrosion rate prediction model of groun-ding grid based on support vector machine optimized by artificial bee colony algorithm[J]. Electric Power Automa-tion Equipment, 2019, 39(5): 182-186. | |
[7] | 宋晓宇, 赵月, 赵明. 多策略混合搜索的人工蜂群算法[J]. 计算机工程与设计, 2020, 41(9): 2530-2537. |
SONG X Y, ZHAO Y, ZHAO M. Artificial bee colony algo-rithm based on multi-strategy hybrid search[J]. Computer Engineering and Design, 2020, 41(9): 2530-2537. | |
[8] | 孔德鹏, 常天庆, 戴文君, 等. 基于排序选择和精英引导的改进人工蜂群算法[J]. 控制与决策, 2019, 34(4): 781-786. |
KONG D P, CHANG T Q, DAI W J, et al. An improved artificial bee colony algorithm based on the ranking selec-tion and the elite guidance[J]. Journal of Control and De-cision, 2019, 34(4): 781-786. | |
[9] | 赵凤, 孔令润, 马改妮. 多目标粒子群和人工蜂群混合优化的阈值图像分割算法[J]. 计算机工程与科学, 2020, 42(2): 281-290. |
ZHAO F, KONG L Y, MA G N. A thresholding image segmentation algorithm based on multi-objective particle swarm and artificial bee colony hybrid optimization[J]. Computer Engineering and Science, 2020, 42(2): 281-290. | |
[10] | 杜振鑫, 刘广钟, 赵学华. 集成学习人工蜂群算法[J]. 西安电子科技大学学报(自然科学版), 2019, 46(2): 124-131. |
DU Z X, LIU G Z, ZHAO X H. Ensemble learning artifi-cial bee colony algorithm[J]. Journal of Xidian University (Natural Science), 2019, 46(2): 124-131. | |
[11] | 郭佳, 马朝斌, 苗萌萌, 等. 基于马尔可夫链的人工蜂群算法[J]. 北京邮电大学学报, 2020, 43(1): 54-60. |
GUO J, MA C B, MIAO M M, et al. Markov chain based artificial bee colony algorithm[J]. Journal of Beijing Uni-versity of Posts and Telecommunications, 2020, 43(1): 54-60. | |
[12] |
HUSEYIN H. A qualified search strategy with artificial bee colony algorithm for continuous optimization[J]. Arabian Journal of Science and Engineering, 2020, 45(2): 1-23.
DOI URL |
[13] |
GONG G L, RAYMOND C, DENG Q W, et al. A hybrid artificial bee colony algorithm for flexible job shop sche-duling with worker flexibility[J]. International Journal of Production Research, 2020, 58(14): 4406-4420.
DOI URL |
[14] |
ZHAO Y, LIU H, GAO K Z. An evacuation simulation me-thod based on an improved artificial bee colony algorithm and a social force model[J]. Applied Intelligence, 2021, 51(1): 100-123.
DOI URL |
[15] |
宋晓宇, 高明海, 赵明. 具有自适应搜索策略的混合人工蜂群算法[J]. 计算机工程与应用, 2019, 55(22): 53-59.
DOI |
SONG X Y, GAO M H, ZHAO M. Hybrid artificial bee colony algorithm with adaptive search strategy[J]. Compu-ter Engineering and Applications, 2019, 55(22): 53-59. | |
[16] |
ANAN B. Artificial bee colony algorithm for enhancing im-age edge detection[J]. Evolving Systems, 2019, 10(4): 679-687.
DOI URL |
[17] |
BANHARNSAKUN A, ACHALAKUL T, SIRINAOVAKUL B. The best so-far selection in artificial bee colony algorithm[J]. Applied Soft Computing, 2011, 11(2): 2888-2901.
DOI URL |
[18] | 宁爱平, 张雪英. 人工蜂群算法的收敛性分析[J]. 控制与决策, 2013, 28(10): 1554-1558. |
NING A P, ZHANG X Y. Convergence analysis of artificial bee colony algorithm[J]. Control and Decision, 2013, 28(10): 1554-1558. | |
[19] |
火久元, 王野, 胡卓娅. 人工蜂群算法的收敛性分析:数形结合[J]. 计算机科学, 2018, 45(10): 212-216.
DOI |
HUO J Y, WANG Y, HU Z Y. Convergence analysis of artificial bee colony algorithm: combination of number and shape[J]. Computer Science, 2018, 45(10): 212-216. | |
[20] | NASR E, RAGIA B. A novel variable population size arti-ficial bee colony algorithm with convergence analysis for optimal parameter tuning[J]. International Journal of Com-putational Intelligence and Applications, 2017, 16(3): 15. |
[21] |
BANSAL J C, GOPAL A, NAGAR A K. Stability analysis of artificial bee colony optimization algorithm[J]. Swarm and Evolutionary Computation, 2018, 41: 9-19.
DOI URL |
[22] |
林凯, 陈国初, 张鑫. 多交互式人工蜂群算法及其收敛性分析[J]. 计算机应用, 2017, 37(3): 760-765.
DOI |
LIN K, CHEN G C, ZHANG X. Multiple interactive arti-ficial bee colony algorithm and its convergence analysis[J]. Journal of Computer Applications, 2017, 37(3): 760-765.
DOI |
|
[23] |
KIRAN M S, HAKLI H, GUNDUZ M, et al. Artificial bee colony algorithm with variable search strategy for contin-uous optimization[J]. Information Sciences, 2015, 300(1): 140-157.
DOI URL |
[24] |
ZHU G P, KWONG S. Gbest-guided artificial bee colony algorithm for numerical function optimization[J]. Applied Mathematics and Computation, 2010, 217(7): 3166-3173.
DOI URL |
[25] |
GAO W F, LIU S Y, HUANG L L. A global best artificial bee colony algorithm for global optimization[J]. Journal of Computational and Applied Mathematics, 2012, 236(11): 2741-2753.
DOI URL |
[26] | 王志刚, 王明刚. 基于符号函数的多搜索策略人工蜂群算法[J]. 控制与决策, 2016, 31(11): 2037-2044. |
WANG Z G, WANG M G. Multi-search strategy artificial bee colony algorithm based on symbolic function[J]. Jour-nal of Control and Decision, 2016, 31(11): 2037-2044. | |
[27] |
GAO W F, LIU S Y. A modified artificial bee colony algo-rithm[J]. Journal of Computer and Operations Research, 2014, 39(3): 687.
DOI URL |
[1] | YE Tingyu, YE Jun, WANG Hui, WANG Lei. Rough K-means Clustering Algorithm Combined with Artificial Bee Colony Optimization [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(8): 1923-1932. |
[2] | GENG Lu, LI Yanjuan. Artificial Bee Colony Algorithm Combining JADE and CoDE Difference Operators [J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(12): 2103-2116. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/