Journal of Frontiers of Computer Science and Technology ›› 2022, Vol. 16 ›› Issue (10): 2377-2386.DOI: 10.3778/j.issn.1673-9418.2203015
• Graphics and Image • Previous Articles Next Articles
SHI Min, SHEN Jialin, YI Qingming, LUO Aiwen+()
Received:
2022-02-11
Revised:
2022-04-15
Online:
2022-10-01
Published:
2022-10-14
About author:
SHI Min, born in 1977, Ph.D., associate professor. Her research interests include image multimedia processing, video codec, etc.Supported by:
通讯作者:
+ E-mail: luoaiwen@jnu.edu.cn作者简介:
石敏(1977—),女,湖北襄樊人,博士,副教授,主要研究方向为图像多媒体处理、视频编解码等。基金资助:
CLC Number:
SHI Min, SHEN Jialin, YI Qingming, LUO Aiwen. Rapid and Ultra-lightweight Semantic Segmentation in Urban Traffic Scene[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(10): 2377-2386.
石敏, 沈佳林, 易清明, 骆爱文. 快速超轻量城市交通场景语义分割[J]. 计算机科学与探索, 2022, 16(10): 2377-2386.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2203015
Module | mIoU/% | Speed/(frame/s) | Parameters/106 |
---|---|---|---|
Bottleneck[ | 52.5 | 141.6 | 0.36 |
Non-bt-1D[ | 71.2 | 73.2 | 1.93 |
CABt | 71.0 | 77.3 | 0.48 |
Table 1 Experimental results of different bottleneck modules in Cityscapes validation set
Module | mIoU/% | Speed/(frame/s) | Parameters/106 |
---|---|---|---|
Bottleneck[ | 52.5 | 141.6 | 0.36 |
Non-bt-1D[ | 71.2 | 73.2 | 1.93 |
CABt | 71.0 | 77.3 | 0.48 |
Module | SAD | mIoU/% | Speed/(frame/s) | Parameters/106 |
---|---|---|---|---|
ResNet[ | 52.5 | 141.6 | 0.36 | |
√ | 53.4 | 132.4 | 0.36 | |
ERFNet[ | 70.0 | 41.9 | 2.10 | |
√ | 71.8 | 70.9 | 1.88 | |
DALNet | 71.0 | 77.3 | 0.48 | |
√ | 71.6 | 74.1 | 0.48 |
Table 2 Experimental results of SAD module in Cityscapes validation set
Module | SAD | mIoU/% | Speed/(frame/s) | Parameters/106 |
---|---|---|---|---|
ResNet[ | 52.5 | 141.6 | 0.36 | |
√ | 53.4 | 132.4 | 0.36 | |
ERFNet[ | 70.0 | 41.9 | 2.10 | |
√ | 71.8 | 70.9 | 1.88 | |
DALNet | 71.0 | 77.3 | 0.48 | |
√ | 71.6 | 74.1 | 0.48 |
Method | Input size | mIoU/% | Parameters/ 106 | Speed/ (frame/s) | |
---|---|---|---|---|---|
val | test | ||||
SegNet[ | 360×640 | 57.8 | 56.1 | 29.50 | 38.2 |
GUN[ | 512×1 024 | 69.6 | 70.4 | — | 33.3 |
ENet[ | 512×1 024 | 59.0 | 58.3 | 0.36 | 27.4 |
CGNet[ | 512×1 024 | 63.5 | 64.8 | 0.49 | 65.6 |
ERFNet[ | 512×1 024 | 70.0 | 68.0 | 2.10 | 41.9 |
ESNet[ | 512×1 024 | 70.4 | 70.7 | 1.66 | 63.0 |
EDANet[ | 512×1 024 | 68.1 | 67.3 | 0.68 | 105.5 |
SQ[19] | 512×1 024 | 59.9 | 59.8 | 16.30 | 25.7 |
ESPNet[ | 512×1 024 | 60.0 | 60.3 | 0.36 | 146.0 |
ContextNet[21] | 1 024×2 048 | 67.3 | 66.1 | 0.85 | 57.7 |
Fast-SCNN[22] | 1 024×2 048 | 68.6 | 68.0 | 1.10 | 67.1 |
LEDNet[ | 512×1 024 | 70.6 | 69.2 | 0.95 | 59.6 |
DABNet[ | 512×1 024 | 69.0 | 70.1 | 0.76 | 102.0 |
DFANet[ | 1 024×1 024 | — | 71.3 | 7.80 | 100.0 |
Network[ | 448×896 | 74.4 | 73.6 | 6.20 | 51.0* |
DALNet (ours) | 512×1 024 | 71.6 | 71.1 | 0.48 | 74.1 |
DALNet (ours) | 1 024×1 024 | 73.5 | 74.1 | 0.48 | 36.5 |
Table 3 Experimental results of different models on Cityscapes dataset
Method | Input size | mIoU/% | Parameters/ 106 | Speed/ (frame/s) | |
---|---|---|---|---|---|
val | test | ||||
SegNet[ | 360×640 | 57.8 | 56.1 | 29.50 | 38.2 |
GUN[ | 512×1 024 | 69.6 | 70.4 | — | 33.3 |
ENet[ | 512×1 024 | 59.0 | 58.3 | 0.36 | 27.4 |
CGNet[ | 512×1 024 | 63.5 | 64.8 | 0.49 | 65.6 |
ERFNet[ | 512×1 024 | 70.0 | 68.0 | 2.10 | 41.9 |
ESNet[ | 512×1 024 | 70.4 | 70.7 | 1.66 | 63.0 |
EDANet[ | 512×1 024 | 68.1 | 67.3 | 0.68 | 105.5 |
SQ[19] | 512×1 024 | 59.9 | 59.8 | 16.30 | 25.7 |
ESPNet[ | 512×1 024 | 60.0 | 60.3 | 0.36 | 146.0 |
ContextNet[21] | 1 024×2 048 | 67.3 | 66.1 | 0.85 | 57.7 |
Fast-SCNN[22] | 1 024×2 048 | 68.6 | 68.0 | 1.10 | 67.1 |
LEDNet[ | 512×1 024 | 70.6 | 69.2 | 0.95 | 59.6 |
DABNet[ | 512×1 024 | 69.0 | 70.1 | 0.76 | 102.0 |
DFANet[ | 1 024×1 024 | — | 71.3 | 7.80 | 100.0 |
Network[ | 448×896 | 74.4 | 73.6 | 6.20 | 51.0* |
DALNet (ours) | 512×1 024 | 71.6 | 71.1 | 0.48 | 74.1 |
DALNet (ours) | 1 024×1 024 | 73.5 | 74.1 | 0.48 | 36.5 |
Method | Input size | mIoU/% | Parameters/106 | Speed/(frame/s) |
---|---|---|---|---|
SegNet[ | 360×480 | 55.6 | 29.50 | 49.8 |
ENet[ | 360×480 | 51.3 | 0.36 | 105.7 |
CGNet[ | 360×480 | 65.6 | 0.50 | 112.0 |
EDANet[ | 360×480 | 66.4 | 0.68 | 232.2 |
ESPNet[ | 360×480 | 55.6 | 0.36 | 297.6 |
LEDNet[23] | 360×480 | 66.6 | 0.95 | 109.6 |
DABNet[24] | 360×480 | 66.4 | 0.76 | — |
DFANet[ | 720×960 | 64.7 | 7.80 | 120.0 |
Network[26] | 720×960 | 68.0 | 6.20 | 39.3* |
SwiftNet[27] | 720×960 | 63.3 | 11.80 | — |
FPENet[28] | 360×480 | 65.4 | 0.40 | 77.1 |
DALNet (ours) | 360×480 | 66.1 | 0.47 | 103.4 |
DALNet (ours) | 720×960 | 70.1 | 0.47 | 54.4 |
Table 4 Experimental results of different models on CamVid test set
Method | Input size | mIoU/% | Parameters/106 | Speed/(frame/s) |
---|---|---|---|---|
SegNet[ | 360×480 | 55.6 | 29.50 | 49.8 |
ENet[ | 360×480 | 51.3 | 0.36 | 105.7 |
CGNet[ | 360×480 | 65.6 | 0.50 | 112.0 |
EDANet[ | 360×480 | 66.4 | 0.68 | 232.2 |
ESPNet[ | 360×480 | 55.6 | 0.36 | 297.6 |
LEDNet[23] | 360×480 | 66.6 | 0.95 | 109.6 |
DABNet[24] | 360×480 | 66.4 | 0.76 | — |
DFANet[ | 720×960 | 64.7 | 7.80 | 120.0 |
Network[26] | 720×960 | 68.0 | 6.20 | 39.3* |
SwiftNet[27] | 720×960 | 63.3 | 11.80 | — |
FPENet[28] | 360×480 | 65.4 | 0.40 | 77.1 |
DALNet (ours) | 360×480 | 66.1 | 0.47 | 103.4 |
DALNet (ours) | 720×960 | 70.1 | 0.47 | 54.4 |
Method | Roa | Sid | Bui | Wal | Fen | Pol | TLi | TSi | Veg | Ter | Sky | Ped | Rid | Car | Tru | Bus | Tra | Mot | Bic | Class | Cat |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SegNet[ | 96.4 | 73.2 | 84.0 | 28.4 | 29.0 | 35.7 | 39.8 | 45.1 | 87.0 | 63.8 | 91.8 | 62.8 | 42.8 | 89.3 | 38.1 | 43.1 | 44.1 | 35.8 | 51.9 | 57.0 | 79.1 |
ENet[ | 96.3 | 74.2 | 75.0 | 32.2 | 33.2 | 43.4 | 34.1 | 44.0 | 88.6 | 61.4 | 90.6 | 65.5 | 38.4 | 90.6 | 36.9 | 50.5 | 48.1 | 38.8 | 55.4 | 58.3 | 80.4 |
CGNet[ | 95.5 | 78.7 | 88.1 | 40.0 | 43.0 | 54.1 | 59.8 | 63.9 | 89.6 | 67.6 | 92.9 | 74.9 | 54.9 | 90.2 | 44.1 | 59.5 | 25.2 | 47.3 | 60.2 | 64.8 | 85.7 |
ERFNet[ | 97.2 | 80.0 | 89.5 | 41.6 | 45.3 | 56.4 | 60.5 | 64.6 | 91.4 | 68.7 | 94.2 | 76.1 | 56.4 | 92.4 | 45.7 | 60.6 | 27.0 | 48.7 | 61.8 | 66.3 | 85.2 |
ESNet[ | 98.1 | 80.4 | 92.4 | 48.3 | 49.2 | 61.5 | 62.5 | 72.3 | 92.5 | 61.5 | 94.4 | 76.6 | 53.2 | 94.4 | 62.5 | 74.3 | 52.4 | 45.5 | 71.4 | 70.7 | 87.4 |
EDANet[ | 97.8 | 80.6 | 89.5 | 42.0 | 46.0 | 52.3 | 59.8 | 65.0 | 91.4 | 68.7 | 93.6 | 75.7 | 54.3 | 92.4 | 40.9 | 58.7 | 56.0 | 50.2 | 64.0 | 67.3 | 85.8 |
SQ[19] | 96.9 | 75.4 | 87.9 | 31.6 | 35.7 | 50.9 | 52.0 | 61.7 | 90.9 | 65.8 | 93.0 | 73.8 | 42.6 | 91.5 | 18.8 | 41.2 | 33.3 | 34.0 | 59.9 | 59.8 | 84.3 |
ESPNet[ | 97.0 | 77.5 | 76.2 | 35.0 | 36.1 | 45.0 | 35.6 | 46.3 | 90.8 | 63.2 | 92.6 | 67.0 | 40.9 | 92.3 | 38.1 | 52.5 | 50.1 | 41.8 | 57.2 | 60.3 | 82.2 |
LEDNet[ | 98.1 | 79.5 | 91.6 | 47.7 | 49.9 | 62.8 | 61.3 | 72.8 | 92.6 | 61.2 | 94.9 | 76.2 | 53.7 | 90.9 | 64.4 | 64.0 | 52.7 | 44.4 | 71.6 | 70.6 | 87.1 |
DALNet-512(ours) | 98.0 | 82.8 | 91.1 | 49.5 | 51.0 | 60.0 | 64.0 | 69.7 | 92.4 | 69.3 | 94.7 | 81.1 | 59.4 | 94.0 | 57.1 | 66.8 | 49.2 | 50.8 | 69.0 | 71.1 | 88.2 |
DALNet-1024(ours) | 98.2 | 83.7 | 91.9 | 54.4 | 53.8 | 62.3 | 67.8 | 72.0 | 92.8 | 70.1 | 95.1 | 82.8 | 63.9 | 94.7 | 62.8 | 75.4 | 60.7 | 55.8 | 70.3 | 74.1 | 89.0 |
Table 5
Method | Roa | Sid | Bui | Wal | Fen | Pol | TLi | TSi | Veg | Ter | Sky | Ped | Rid | Car | Tru | Bus | Tra | Mot | Bic | Class | Cat |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SegNet[ | 96.4 | 73.2 | 84.0 | 28.4 | 29.0 | 35.7 | 39.8 | 45.1 | 87.0 | 63.8 | 91.8 | 62.8 | 42.8 | 89.3 | 38.1 | 43.1 | 44.1 | 35.8 | 51.9 | 57.0 | 79.1 |
ENet[ | 96.3 | 74.2 | 75.0 | 32.2 | 33.2 | 43.4 | 34.1 | 44.0 | 88.6 | 61.4 | 90.6 | 65.5 | 38.4 | 90.6 | 36.9 | 50.5 | 48.1 | 38.8 | 55.4 | 58.3 | 80.4 |
CGNet[ | 95.5 | 78.7 | 88.1 | 40.0 | 43.0 | 54.1 | 59.8 | 63.9 | 89.6 | 67.6 | 92.9 | 74.9 | 54.9 | 90.2 | 44.1 | 59.5 | 25.2 | 47.3 | 60.2 | 64.8 | 85.7 |
ERFNet[ | 97.2 | 80.0 | 89.5 | 41.6 | 45.3 | 56.4 | 60.5 | 64.6 | 91.4 | 68.7 | 94.2 | 76.1 | 56.4 | 92.4 | 45.7 | 60.6 | 27.0 | 48.7 | 61.8 | 66.3 | 85.2 |
ESNet[ | 98.1 | 80.4 | 92.4 | 48.3 | 49.2 | 61.5 | 62.5 | 72.3 | 92.5 | 61.5 | 94.4 | 76.6 | 53.2 | 94.4 | 62.5 | 74.3 | 52.4 | 45.5 | 71.4 | 70.7 | 87.4 |
EDANet[ | 97.8 | 80.6 | 89.5 | 42.0 | 46.0 | 52.3 | 59.8 | 65.0 | 91.4 | 68.7 | 93.6 | 75.7 | 54.3 | 92.4 | 40.9 | 58.7 | 56.0 | 50.2 | 64.0 | 67.3 | 85.8 |
SQ[19] | 96.9 | 75.4 | 87.9 | 31.6 | 35.7 | 50.9 | 52.0 | 61.7 | 90.9 | 65.8 | 93.0 | 73.8 | 42.6 | 91.5 | 18.8 | 41.2 | 33.3 | 34.0 | 59.9 | 59.8 | 84.3 |
ESPNet[ | 97.0 | 77.5 | 76.2 | 35.0 | 36.1 | 45.0 | 35.6 | 46.3 | 90.8 | 63.2 | 92.6 | 67.0 | 40.9 | 92.3 | 38.1 | 52.5 | 50.1 | 41.8 | 57.2 | 60.3 | 82.2 |
LEDNet[ | 98.1 | 79.5 | 91.6 | 47.7 | 49.9 | 62.8 | 61.3 | 72.8 | 92.6 | 61.2 | 94.9 | 76.2 | 53.7 | 90.9 | 64.4 | 64.0 | 52.7 | 44.4 | 71.6 | 70.6 | 87.1 |
DALNet-512(ours) | 98.0 | 82.8 | 91.1 | 49.5 | 51.0 | 60.0 | 64.0 | 69.7 | 92.4 | 69.3 | 94.7 | 81.1 | 59.4 | 94.0 | 57.1 | 66.8 | 49.2 | 50.8 | 69.0 | 71.1 | 88.2 |
DALNet-1024(ours) | 98.2 | 83.7 | 91.9 | 54.4 | 53.8 | 62.3 | 67.8 | 72.0 | 92.8 | 70.1 | 95.1 | 82.8 | 63.9 | 94.7 | 62.8 | 75.4 | 60.7 | 55.8 | 70.3 | 74.1 | 89.0 |
[1] | CHEN L C, ZHU Y, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]// LNCS 11211: Proceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Cham: Springer, 2018: 833-851. |
[2] | ZHAO H S, SHI J P, QI X J, et al. Pyramid scene parsing network[C]// Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 6230-6239. |
[3] |
马书浩, 安居白, 于博. 改进DeepLabv2的实时图像语义分割算法[J]. 计算机工程与应用, 2020, 56(18): 157-164.
DOI |
MA S H, AN J B, YU B. Improved DeepLabv2 real-time image semantic segmentation algorithm[J]. Computer Engineering and Applications, 2020, 56(18): 157-164.
DOI |
|
[4] |
兰天翔, 向子彧, 刘名果, 等. 融合U-Net及MobileNet-V2的快速语义分割网络[J]. 计算机工程与应用, 2021, 57(17): 175-180.
DOI |
LAN T X, XIANG Z Y, LIU M G, et al. Quick semantic segmentation network based on U-Net and MobileNet-V2[J]. Computer Engineering and Applications, 2021, 57(17): 175-180.
DOI |
|
[5] |
马宇, 张丽果, 杜慧敏, 等. 卷积神经网络的交通标志语义分割[J]. 计算机科学与探索, 2021, 15(6): 1114-1121.
DOI |
MA Y, ZHANG L G, DU H M, et al. Traffic sign semantic segmentation based on convolutional neural network[J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(6): 1114-1121.
DOI |
|
[6] | SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv:1409. 1556, 2014. |
[7] | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer Society, 2016: 770-778. |
[8] | CHOLLET F. Xception: deep learning with depthwise separable convolutions[C]// Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 1800-1807. |
[9] |
BADRINARAYANAN V, KENDALL A, CIPOLLA R. SegNet: a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481-2495.
DOI PMID |
[10] | ZHAO H, QI X, SHEN X, et al. ICNet for real-time semantic segmentation on high-resolution images[C]// LNCS 11207: Proceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Cham: Springer, 2018: 418- 434. |
[11] | MAZZINI D. Guided upsampling network for real-time semantic segmentation[J]. arXiv:1807.07466, 2018. |
[12] | PASZKE A, CHAURASIA A, KIM S, et al. ENet: a deep neural network architecture for real-time semantic segmentation[J]. arXiv:1606.02147, 2016. |
[13] |
WU T, TANG S, ZHANG R, et al. CGNet: a light-weight context guided network for semantic segmentation[J]. IEEE Transactions on Image Processing, 2021, 30: 1169-1179.
DOI PMID |
[14] |
ROMERA E, ALVAREZ J M, BERGASA L M, et al. ERFNet: efficient residual factorized convnet for real-time semantic segmentation[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 19(1): 263-272.
DOI URL |
[15] | WANG Y, ZHOU Q, XIONG J, et al. ESNet:an efficient symmetric network for real-time semantic segmentation[C]// LNCS 11858: Proceedings of the 2nd Chinese Conference on Pattern Recognition and Computer Vision, Xi’an, Nov 8-11, 2019. Cham: Springer, 2019: 41-52. |
[16] | LO S Y, HANG H M, CHAN S W, et al. Efficient dense modules of asymmetric convolution for real-time semantic segmentation[C]// Proceedings of the ACM Multimedia Asia, Beijing, Dec 16-18, 2019. New York: ACM, 2019: 1-6. |
[17] | CORDTS M, OMRAN M, RAMOS S, et al. The cityscapes dataset for semantic urban scene understanding[C]// Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer Society, 2016: 3213-3223. |
[18] |
BROSTOW G J, FAUQUEUR J, CIPOLLA R. Semantic object classes in video: a high-definition ground truth database[J]. Pattern Recognition Letters, 2009, 30(2): 88-97.
DOI URL |
[19] | TREML M, ARJONA-MEDINA J, UNTERTHINER T, et al. Speeding up semantic segmentation for autonomous driving[C]// Proceedings of the 29th Conference on Neural Information Processing Systems. Red Hook: Curran Associates, 2016: 1-7. |
[20] | MEHTA S, RASTEGARI M, CASPI A, et al. ESPNet: efficient spatial pyramid of dilated convolutions for semantic segmentation[C]// LNCS 11214: Proceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Cham: Springer, 2018: 561-580. |
[21] | POUDEL R P, BONDE U, LIWICKI S, et al. ContextNet: exploring context and detail for semantic segmentation in real-time[J]. arXiv:1805.04554, 2018. |
[22] | POUDEL R P K, LIWICKI S, CIPOLLA R. Fast-SCNN: fast semantic segmentation network[J]. arXiv:1902.04502, 2019. |
[23] | WANG Y, ZHOU Q, LIU J, et al. LEDNet: a lightweight encoder-decoder network for real-time semantic segmentation[C]// Proceedings of the 29th IEEE International Conference on Image Processing, Taipei, China, Sep 22-25, 2019. Piscataway: IEEE, 2019: 1860-1864. |
[24] | LI G, YUN I, KIM J, et al. DABNet: depth-wise asymmetric bottleneck for real-time semantic segmentation[J]. arXiv:1907.11357, 2019. |
[25] | LI H, XIONG P, FAN H, et al. DFANet: deep feature aggregation for real-time semantic segmentation[C]// Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 9522-9531. |
[26] |
DONG G, YAN Y, SHEN C, et al. Real-time high-performance semantic image segmentation of urban street scenes[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 22(6): 3258-3274.
DOI URL |
[27] | ORSIC M, KRESO I, BEVANDIC P, et al. In defense of pre-trained ImageNet architectures for real-time semantic segmentation of road-driving images[C]// Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 12607-12616. |
[28] | LIU M, YIN H. Feature pyramid encoding network for real-time semantic segmentation[J]. arXiv:1909.08599, 2019. |
[1] | LI Yunhuan, WEN Jiwei, PENG Li. High Frame Rate Light-Weight Siamese Network Target Tracking [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(6): 1405-1416. |
[2] | LI Kuankuan, LIU Libo. Fine-Grained Image Classification Model Based on Bilinear Aggregate Residual Attention [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(4): 938-949. |
[3] | LI Jie. Attention and Texture Feature Enhancement for Person Re-identification [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(3): 661-668. |
[4] | GU Penghui, XIAO Zhiyong. Application of Improved U-Net in Retinal Vessel Segmentation [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(3): 683-691. |
[5] | LI Wentao, PENG Li. Small Objects Detection Algorithm with Multi-scale Channel Attention Fusion Network [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(12): 2390-2400. |
[6] | MENG Xianfa, LIU Fang, LI Guang, HUANG Mengmeng. Review of Knowledge Distillation in Convolutional Neural Network Compression [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(10): 1812-1829. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/