Journal of Frontiers of Computer Science and Technology ›› 2022, Vol. 16 ›› Issue (3): 661-668.DOI: 10.3778/j.issn.1673-9418.2010046
• Graphics and Image • Previous Articles Next Articles
Received:
2020-09-14
Revised:
2020-11-16
Online:
2022-03-01
Published:
2020-12-08
About author:
LI Jie, born in 1984, M.S., engineer. His research interests include person re-identification, data mining, etc.
Supported by:
通讯作者:
+ E-mail: j-li@cauc.edu.cn作者简介:
李杰(1984—),男,山西原平人,硕士,工程师,主要研究方向为行人再识别、数据挖掘等。
基金资助:
CLC Number:
LI Jie. Attention and Texture Feature Enhancement for Person Re-identification[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(3): 661-668.
李杰. 结合注意力和纹理特征增强的行人再识别[J]. 计算机科学与探索, 2022, 16(3): 661-668.
方法 | gender | hat | boots | L.up | B.pack | H.bag | Bag | C.shoes | C.up | C.low | mAP |
---|---|---|---|---|---|---|---|---|---|---|---|
不包含空间注意力模块 | 69.4 | 79.4 | 78.5 | 87.6 | 67.7 | 89.8 | 83.2 | 88.6 | 80.4 | 90.1 | 81.5 |
包含空间注意力模块 | 86.3 | 89.9 | 90.7 | 88.4 | 83.4 | 93.5 | 81.0 | 91.2 | 94.3 | 91.4 | 89.0 |
Table 1 Validity verification of spatial attention module for attribute recognition %
方法 | gender | hat | boots | L.up | B.pack | H.bag | Bag | C.shoes | C.up | C.low | mAP |
---|---|---|---|---|---|---|---|---|---|---|---|
不包含空间注意力模块 | 69.4 | 79.4 | 78.5 | 87.6 | 67.7 | 89.8 | 83.2 | 88.6 | 80.4 | 90.1 | 81.5 |
包含空间注意力模块 | 86.3 | 89.9 | 90.7 | 88.4 | 83.4 | 93.5 | 81.0 | 91.2 | 94.3 | 91.4 | 89.0 |
λ | Market-1501 | DukeMTMC | ||
---|---|---|---|---|
Rank-1/% | mAP/% | Rank-1/% | mAP/% | |
2 | 93.8 | 80.3 | 84.4 | 70.2 |
4 | 94.2 | 81.1 | 84.7 | 70.1 |
6 | 94.2 | 80.8 | 83.6 | 69.1 |
8 | 93.7 | 80.3 | 84.1 | 68.8 |
Table 2 Results of different λon datasets
λ | Market-1501 | DukeMTMC | ||
---|---|---|---|---|
Rank-1/% | mAP/% | Rank-1/% | mAP/% | |
2 | 93.8 | 80.3 | 84.4 | 70.2 |
4 | 94.2 | 81.1 | 84.7 | 70.1 |
6 | 94.2 | 80.8 | 83.6 | 69.1 |
8 | 93.7 | 80.3 | 84.1 | 68.8 |
实验 | 方法 | Market-1501 | DukeMTMC-reID | ||
---|---|---|---|---|---|
Rank-1/% | mAP/% | Rank-1/% | mAP/% | ||
1 | 不包含空间注意力模块的属性识别网络 | 92.4 | 79.1 | 82.6 | 67.9 |
2 | 不包含纹理特征增强模块的行人再识别网络 | 92.3 | 78.4 | 78.0 | 66.1 |
3 | 单任务属性识别网络 | 74.5 | 50.2 | 61.1 | 38.0 |
4 | 单任务行人再识别网络 | 91.6 | 77.3 | 81.1 | 65.1 |
5 | 本文方法 | 94.2 | 81.1 | 84.7 | 70.1 |
Table 3 Results comparison of Market-1501 and DukeMTMC-reID evaluation sets
实验 | 方法 | Market-1501 | DukeMTMC-reID | ||
---|---|---|---|---|---|
Rank-1/% | mAP/% | Rank-1/% | mAP/% | ||
1 | 不包含空间注意力模块的属性识别网络 | 92.4 | 79.1 | 82.6 | 67.9 |
2 | 不包含纹理特征增强模块的行人再识别网络 | 92.3 | 78.4 | 78.0 | 66.1 |
3 | 单任务属性识别网络 | 74.5 | 50.2 | 61.1 | 38.0 |
4 | 单任务行人再识别网络 | 91.6 | 77.3 | 81.1 | 65.1 |
5 | 本文方法 | 94.2 | 81.1 | 84.7 | 70.1 |
实验 | 方法 | Market-1501 | DukeMTMC-reID | ||
---|---|---|---|---|---|
Rank-1/% | mAP/% | Rank-1/% | mAP/% | ||
单任务行人再识别算法 | SVDNet[ | 82.3 | 62.1 | 76.7 | 56.8 |
PAN[ | 82.8 | 63.4 | 71.6 | 51.5 | |
PAR[ | 81.0 | 63.4 | — | — | |
MultiLoss[ | 83.9 | 64.4 | — | — | |
TripletLoss[ | 84.9 | 69.1 | — | — | |
MultiScale[ | 88.9 | 73.1 | 79.2 | 60.6 | |
PCB[ | 92.4 | 77.3 | 81.8 | 66.1 | |
HA-CNN[ | 91.2 | 75.7 | 80.5 | 63.8 | |
多任务行人再识别算法 | APR[ | 84.3 | 64.7 | 70.7 | 51.9 |
ACRN[ | 83.6 | 62.6 | 72.6 | 52.0 | |
JCM[ | 91.3 | 81.2 | — | — | |
CA3Net[ | 93.2 | 80.0 | 84.6 | 70.2 | |
本文算法 | Proposed | 94.2 | 81.1 | 84.7 | 70.1 |
Table 4 Comparison with existing methods on Market-1501 and DukeMTMC-reID datasets
实验 | 方法 | Market-1501 | DukeMTMC-reID | ||
---|---|---|---|---|---|
Rank-1/% | mAP/% | Rank-1/% | mAP/% | ||
单任务行人再识别算法 | SVDNet[ | 82.3 | 62.1 | 76.7 | 56.8 |
PAN[ | 82.8 | 63.4 | 71.6 | 51.5 | |
PAR[ | 81.0 | 63.4 | — | — | |
MultiLoss[ | 83.9 | 64.4 | — | — | |
TripletLoss[ | 84.9 | 69.1 | — | — | |
MultiScale[ | 88.9 | 73.1 | 79.2 | 60.6 | |
PCB[ | 92.4 | 77.3 | 81.8 | 66.1 | |
HA-CNN[ | 91.2 | 75.7 | 80.5 | 63.8 | |
多任务行人再识别算法 | APR[ | 84.3 | 64.7 | 70.7 | 51.9 |
ACRN[ | 83.6 | 62.6 | 72.6 | 52.0 | |
JCM[ | 91.3 | 81.2 | — | — | |
CA3Net[ | 93.2 | 80.0 | 84.6 | 70.2 | |
本文算法 | Proposed | 94.2 | 81.1 | 84.7 | 70.1 |
[1] | FELZENSZWALB P F, GIRSHICK R B, MCALLESTER D A, et al. Object detection with discriminatively trained part-based models[J]. IEEE Transactions on Software Engineering, 2010, 32(9): 1627-1645. |
[2] | GRAY D, TAO H. Viewpoint invariant pedestrian recognition with an ensemble of localized features[C]// LNCS 5302: Proceedings of the 10th European Conference on Computer Vision, Marseille, Oct 12-18, 2008. Berlin, Heidelberg: Springer, 2008: 262-275. |
[3] | LOY C C, LIU C X, GONG S G. Person re-identification by manifold ranking[C]// Proceedings of the 2013 IEEE International Conference on Image Processing, Melbourne, Sep 15-18, 2013. Piscataway: IEEE, 2013: 3567-3571. |
[4] | 谢林江, 季桂树, 彭清, 等. 改进的卷积神经网络在行人检测中的应用[J]. 计算机科学与探索, 2018, 12(5): 708-718. |
XIE L J, JI G S, PENG Q, et al. Application of preprocessing convolutional neural network in pedestrian detection[J]. Journal of Frontiers of Computer Science and Technology, 2018, 12(5): 708-718. | |
[5] | 宋丽丽. 迁移度量学习行人再识别算法[J]. 计算机工程与应用, 2019, 55(20): 170-176. |
SONG L L. Transfer metric learning for person re-identification[J]. Computer Engineering and Applications, 2019, 55(20): 170-176. | |
[6] | 宋丽丽, 李彬, 赵俊雅, 等. 正态重采样的改进行人再识别度量学习算法[J]. 计算机工程与应用, 2020, 56(8): 158-165. |
SONG L L, LI B, ZHAO J Y, et al. Normality resampling of improved metric learning method for person re-identification[J]. Computer Engineering and Applications, 2020, 56(8): 158-165. | |
[7] | LI W, ZHAO R, XIAO T, et al. DeepReID: deep filter pairing neural network for person re-identification[C]// Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, Jun 23-28, 2014. Washington: IEEE Computer Society, 2014: 152-159. |
[8] |
LIN Y T, ZHENG L, ZHENG Z D, et al. Improving person re-identification by attribute and identity learning[J]. Pattern Recognition, 2019, 95: 151-161.
DOI URL |
[9] | ZHENG L, SHEN L Y, TIAN L, et al. Scalable person re-identification: a benchmark[C]// Proceedings of the 2015 IEEE International Conference on Computer Vision, Santiago, Dec 7-13, 2015. Washington: IEEE Computer Society, 2015: 1116-1124. |
[10] | SCHUMANN A, STIEFELHAGEN R. Person re-identification by deep learning attribute-complementary information[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 1435-1443. |
[11] | LIU H, WU J J, JIANG J G, et al. Sequence-based person attribute recognition with joint CTC-Attention model[J]. arXiv:1811.08115, 2018. |
[12] | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer Society, 2016: 770-778. |
[13] | HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 2261-2269. |
[14] | ZHENG Z D, ZHENG L, YANG Y, et al. Unlabeled samples generated by GAN improve the person re-identification baseline in vitro[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Oct 22-29, 2017. Washington: IEEE Computer Society, 2017: 3774-3782. |
[15] | FU C Y, LIU W, RANGA A, et al. DSSD: deconvolutional single shot detector[J]. arXiv:1701.06659, 2017. |
[16] | ABHINAV S, RAHUL S, JITENDRA M, et al. Beyond skip connections: top-down modulation for object detection[J]. arXiv:1612.06851, 2016. |
[17] | DAI J F, QI H Z, XIONG Y W, et al. Deformable convolutional networks[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Oct 22-29, 2017. Washington: IEEE Computer Society, 2017: 764-773. |
[18] | FU Y, WEI Y C, ZHOU Y Q, et al. Horizontal pyramid matching for person re-identification[C]// Proceedings of the 33rd AAAI Conference on Artificial Intelligence, the 31st Innovative Applications of Artificial Intelligence Conference, the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, Honolulu, Jan 27-Feb 1, 2019. Menlo Park: AAAI, 2019: 8295-8302. |
[19] | LIU J W, ZHA Z J, XIE H T, et al. CA3Net: contextual- attentional attribute-appearance network for person re- identification[C]// Proceedings of the 2018 ACM Multimedia Conference on Multimedia Conference, Seoul, Oct 22-26, 2018. New York: ACM, 2018: 737-745. |
[20] | LIN T Y, DOLLÁR P, GIRSHICK R B, et al. Feature pyramid networks for object detection[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 936-944. |
[21] | SUN Y F, ZHENG L, DENG W J, et al. SVDNet for pedestrian retrieval[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Oct 22-29, 2017. Washington: IEEE Computer Society, 2017: 3820-3828. |
[22] | ZHENG Z D, ZHENG J, YANG Y. Pedestrian alignment network for large-scale person re-identification[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2019(10): 3037-3045. |
[23] | ZHAO L M, LI X, ZHUANG Y T, et al. Deeply-learned part-aligned representations for person re-identification[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Oct 22-29, 2017. Washington: IEEE Computer Society, 2017: 3219-3228. |
[24] | LI W, ZHU X T, GONG S G. Person re-identification by deep joint learning of multi-loss classification[C]// Proceedings of the 26th International Joint Conference on Artificial Intelligence, Melbourne, Aug 19-25, 2017: 2194-2200. |
[25] | HERMANS A, BEYER L, LEIBE B. In defense of the triplet loss for person re-identification[J]. arXiv:1703.07737, 2017. |
[26] | CHEN Y B, ZHU X T, GONG S G. Person re-identification by deep learning multi-scale representations[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision Workshops, Venice, Oct 22-29, 2017. Washington: IEEE Computer Society, 2017: 2590-2600. |
[27] | SUN Y F, ZHENG L, YANG Y, et al. Beyond part models: person retrieval with refined part pooling (and a strong convolutional baseline)[C]// LNCS 11208: Proceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Cham: Springer, 2018: 501-518. |
[28] | LI W, ZHU X T, GONG S G. Harmonious attention network for person re-identification[C]// Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Washington: IEEE Computer Society, 2018: 2285-2294. |
[1] | YUAN Chunmiao, NIU Ying, GUO Tao, LI Xin. Person Re-identification Combined with Clothing Information Transfer [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(9): 1740-1752. |
[2] | CHEN Fan, PENG Li. Person Re-identification Based on Multi-level Feature Fusion with Overlapping Stripes [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(9): 1753-1761. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 188
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 341
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/