[1] |
FELZENSZWALB P F, GIRSHICK R B, MCALLESTER D A, et al. Object detection with discriminatively trained part-based models[J]. IEEE Transactions on Software Engineering, 2010, 32(9): 1627-1645.
|
[2] |
GRAY D, TAO H. Viewpoint invariant pedestrian recognition with an ensemble of localized features[C]// LNCS 5302: Proceedings of the 10th European Conference on Computer Vision, Marseille, Oct 12-18, 2008. Berlin, Heidelberg: Springer, 2008: 262-275.
|
[3] |
LOY C C, LIU C X, GONG S G. Person re-identification by manifold ranking[C]// Proceedings of the 2013 IEEE International Conference on Image Processing, Melbourne, Sep 15-18, 2013. Piscataway: IEEE, 2013: 3567-3571.
|
[4] |
谢林江, 季桂树, 彭清, 等. 改进的卷积神经网络在行人检测中的应用[J]. 计算机科学与探索, 2018, 12(5): 708-718.
|
|
XIE L J, JI G S, PENG Q, et al. Application of preprocessing convolutional neural network in pedestrian detection[J]. Journal of Frontiers of Computer Science and Technology, 2018, 12(5): 708-718.
|
[5] |
宋丽丽. 迁移度量学习行人再识别算法[J]. 计算机工程与应用, 2019, 55(20): 170-176.
|
|
SONG L L. Transfer metric learning for person re-identification[J]. Computer Engineering and Applications, 2019, 55(20): 170-176.
|
[6] |
宋丽丽, 李彬, 赵俊雅, 等. 正态重采样的改进行人再识别度量学习算法[J]. 计算机工程与应用, 2020, 56(8): 158-165.
|
|
SONG L L, LI B, ZHAO J Y, et al. Normality resampling of improved metric learning method for person re-identification[J]. Computer Engineering and Applications, 2020, 56(8): 158-165.
|
[7] |
LI W, ZHAO R, XIAO T, et al. DeepReID: deep filter pairing neural network for person re-identification[C]// Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, Jun 23-28, 2014. Washington: IEEE Computer Society, 2014: 152-159.
|
[8] |
LIN Y T, ZHENG L, ZHENG Z D, et al. Improving person re-identification by attribute and identity learning[J]. Pattern Recognition, 2019, 95: 151-161.
DOI
URL
|
[9] |
ZHENG L, SHEN L Y, TIAN L, et al. Scalable person re-identification: a benchmark[C]// Proceedings of the 2015 IEEE International Conference on Computer Vision, Santiago, Dec 7-13, 2015. Washington: IEEE Computer Society, 2015: 1116-1124.
|
[10] |
SCHUMANN A, STIEFELHAGEN R. Person re-identification by deep learning attribute-complementary information[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 1435-1443.
|
[11] |
LIU H, WU J J, JIANG J G, et al. Sequence-based person attribute recognition with joint CTC-Attention model[J]. arXiv:1811.08115, 2018.
|
[12] |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer Society, 2016: 770-778.
|
[13] |
HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 2261-2269.
|
[14] |
ZHENG Z D, ZHENG L, YANG Y, et al. Unlabeled samples generated by GAN improve the person re-identification baseline in vitro[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Oct 22-29, 2017. Washington: IEEE Computer Society, 2017: 3774-3782.
|
[15] |
FU C Y, LIU W, RANGA A, et al. DSSD: deconvolutional single shot detector[J]. arXiv:1701.06659, 2017.
|
[16] |
ABHINAV S, RAHUL S, JITENDRA M, et al. Beyond skip connections: top-down modulation for object detection[J]. arXiv:1612.06851, 2016.
|
[17] |
DAI J F, QI H Z, XIONG Y W, et al. Deformable convolutional networks[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Oct 22-29, 2017. Washington: IEEE Computer Society, 2017: 764-773.
|
[18] |
FU Y, WEI Y C, ZHOU Y Q, et al. Horizontal pyramid matching for person re-identification[C]// Proceedings of the 33rd AAAI Conference on Artificial Intelligence, the 31st Innovative Applications of Artificial Intelligence Conference, the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, Honolulu, Jan 27-Feb 1, 2019. Menlo Park: AAAI, 2019: 8295-8302.
|
[19] |
LIU J W, ZHA Z J, XIE H T, et al. CA3Net: contextual- attentional attribute-appearance network for person re- identification[C]// Proceedings of the 2018 ACM Multimedia Conference on Multimedia Conference, Seoul, Oct 22-26, 2018. New York: ACM, 2018: 737-745.
|
[20] |
LIN T Y, DOLLÁR P, GIRSHICK R B, et al. Feature pyramid networks for object detection[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 936-944.
|
[21] |
SUN Y F, ZHENG L, DENG W J, et al. SVDNet for pedestrian retrieval[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Oct 22-29, 2017. Washington: IEEE Computer Society, 2017: 3820-3828.
|
[22] |
ZHENG Z D, ZHENG J, YANG Y. Pedestrian alignment network for large-scale person re-identification[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2019(10): 3037-3045.
|
[23] |
ZHAO L M, LI X, ZHUANG Y T, et al. Deeply-learned part-aligned representations for person re-identification[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Oct 22-29, 2017. Washington: IEEE Computer Society, 2017: 3219-3228.
|
[24] |
LI W, ZHU X T, GONG S G. Person re-identification by deep joint learning of multi-loss classification[C]// Proceedings of the 26th International Joint Conference on Artificial Intelligence, Melbourne, Aug 19-25, 2017: 2194-2200.
|
[25] |
HERMANS A, BEYER L, LEIBE B. In defense of the triplet loss for person re-identification[J]. arXiv:1703.07737, 2017.
|
[26] |
CHEN Y B, ZHU X T, GONG S G. Person re-identification by deep learning multi-scale representations[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision Workshops, Venice, Oct 22-29, 2017. Washington: IEEE Computer Society, 2017: 2590-2600.
|
[27] |
SUN Y F, ZHENG L, YANG Y, et al. Beyond part models: person retrieval with refined part pooling (and a strong convolutional baseline)[C]// LNCS 11208: Proceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Cham: Springer, 2018: 501-518.
|
[28] |
LI W, ZHU X T, GONG S G. Harmonious attention network for person re-identification[C]// Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Washington: IEEE Computer Society, 2018: 2285-2294.
|