Journal of Frontiers of Computer Science and Technology ›› 2022, Vol. 16 ›› Issue (5): 1008-1024.DOI: 10.3778/j.issn.1673-9418.2110024
• Surveys and Frontiers • Previous Articles Next Articles
XIONG Xiao1, LI Leixiao2,4,+(), GAO Jing3, GAO Haoyu2, DU Jinze2, ZHENG Yue2, NIU Tieming2
Received:
2021-10-24
Revised:
2022-01-14
Online:
2022-05-01
Published:
2022-05-19
About author:
XIONG Xiao, born in 1993, M.S. candidate. His research interests include big data security and blockchain.Supported by:
熊啸1, 李雷孝2,4,+(), 高静3, 高昊昱2, 杜金泽2, 郑岳2, 牛铁铭2
通讯作者:
+ E-mail: llxhappy@126.com作者简介:
熊啸(1993—),男,河南信阳人,硕士研究生,主要研究方向为大数据安全、区块链。基金资助:
CLC Number:
XIONG Xiao, LI Leixiao, GAO Jing, GAO Haoyu, DU Jinze, ZHENG Yue, NIU Tieming. Research Progress of Blockchain in Internet of Vehicles Data Sharing[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(5): 1008-1024.
熊啸, 李雷孝, 高静, 高昊昱, 杜金泽, 郑岳, 牛铁铭. 区块链在车联网数据共享领域的研究进展[J]. 计算机科学与探索, 2022, 16(5): 1008-1024.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2110024
激励机制 | 文献 | 特点 | 优势 | 局限性 |
---|---|---|---|---|
数字货币 | Fujihara等[ | 通过车辆与信标设备竞争与协作,并利用数字货币来激励协调收集和共享交通信息 | 普通市民也可以参与,监控更多路段,进行交通控制 | 信标设备数量足够多,才能保证信息可靠,利用区块链的分叉点进行道路状态异常检测,降低了系统的可靠性 |
Zhang等[ | 方便车辆广播公告消息给予货币奖励 | 采用后验和先验对抗,从源头阻止虚假公告 | 事务位于来自两个不同区域的两个实体之间,那么事务率就不够高,系统的吞吐量不高 | |
Chen等[ | 基于拍卖的质量驱动激励机制,平台充当拍卖人,从用户那里购买数据,保证链上数据和链下数据的信任 | 数据质量纳入其机制 | 共识流程仅适用于预先选择的路侧单元,而不是区块链的整个节点 | |
信誉值 | Chen等[ | 设计了一个信誉评估方案(reputation assessment scheme,RES)防止恶意节点传播虚假消息 | 负共享记录和正共享记录组合来对不同提供商的服务质量进行评分,还可以追溯恶意节点 | 共享方案更适合车辆相对位置相对固定的高速公路场景。在车辆拓扑快速变化的情况下,底层区块链的成员会发生巨大变化,这使得计算更加复杂 |
Chai等[ | 提出了一种轻量级的共识机制——信誉证明(proof of reputation,POR)机制,以降低计算功耗,激励车辆参与资源共享 | 信誉共识机制来代替挖掘,将交易工具和区块发布者分离,在维护交易工具隐私的同时,还降低通信成本 | POR共识机制开销大,吞吐量不高 | |
Kang等[ | 实现车辆间高质量数据共享的精确信誉管理 | 利用三权重主观(交互频率、事件及时性和轨迹相似性)逻辑来精确管理车辆的信誉,车辆根据声誉选择最佳数据提供商 | 路侧单元(road-side unit,RSU)[ |
Table 1 System of encouragement
激励机制 | 文献 | 特点 | 优势 | 局限性 |
---|---|---|---|---|
数字货币 | Fujihara等[ | 通过车辆与信标设备竞争与协作,并利用数字货币来激励协调收集和共享交通信息 | 普通市民也可以参与,监控更多路段,进行交通控制 | 信标设备数量足够多,才能保证信息可靠,利用区块链的分叉点进行道路状态异常检测,降低了系统的可靠性 |
Zhang等[ | 方便车辆广播公告消息给予货币奖励 | 采用后验和先验对抗,从源头阻止虚假公告 | 事务位于来自两个不同区域的两个实体之间,那么事务率就不够高,系统的吞吐量不高 | |
Chen等[ | 基于拍卖的质量驱动激励机制,平台充当拍卖人,从用户那里购买数据,保证链上数据和链下数据的信任 | 数据质量纳入其机制 | 共识流程仅适用于预先选择的路侧单元,而不是区块链的整个节点 | |
信誉值 | Chen等[ | 设计了一个信誉评估方案(reputation assessment scheme,RES)防止恶意节点传播虚假消息 | 负共享记录和正共享记录组合来对不同提供商的服务质量进行评分,还可以追溯恶意节点 | 共享方案更适合车辆相对位置相对固定的高速公路场景。在车辆拓扑快速变化的情况下,底层区块链的成员会发生巨大变化,这使得计算更加复杂 |
Chai等[ | 提出了一种轻量级的共识机制——信誉证明(proof of reputation,POR)机制,以降低计算功耗,激励车辆参与资源共享 | 信誉共识机制来代替挖掘,将交易工具和区块发布者分离,在维护交易工具隐私的同时,还降低通信成本 | POR共识机制开销大,吞吐量不高 | |
Kang等[ | 实现车辆间高质量数据共享的精确信誉管理 | 利用三权重主观(交互频率、事件及时性和轨迹相似性)逻辑来精确管理车辆的信誉,车辆根据声誉选择最佳数据提供商 | 路侧单元(road-side unit,RSU)[ |
相关文献 | 访问控制 | 数据机密性 | 特点 |
---|---|---|---|
[ | 基于属性,细粒度,一对多 | AES(advanced encryption standard)+CP-ABE(ciphertext policy attribute based encryption)[ | 当数据访问者的属性满足访问控制策略时才能解密,实现数据可控共享 |
[ | 基于角色,预先确定身份,一对一 | AES+IBE(identity based encryption) | 实现了用户角色的跨组织认证 |
[ | 分区,预先划分域 | 无 | 事先按照组织、机构划分固定共享区域 |
Table 2 Research on integrating blockchain into Internet of vehicles access control model
相关文献 | 访问控制 | 数据机密性 | 特点 |
---|---|---|---|
[ | 基于属性,细粒度,一对多 | AES(advanced encryption standard)+CP-ABE(ciphertext policy attribute based encryption)[ | 当数据访问者的属性满足访问控制策略时才能解密,实现数据可控共享 |
[ | 基于角色,预先确定身份,一对一 | AES+IBE(identity based encryption) | 实现了用户角色的跨组织认证 |
[ | 分区,预先划分域 | 无 | 事先按照组织、机构划分固定共享区域 |
相关文献 | 可扩展性方法 | 特点 |
---|---|---|
Chai等[ | 分层 | 通过分层链的设计,解决对单个节点的存储压力、计算压力,提高了系统的可扩展性 |
Shrestha等[ Zhang等[ Yang等[ | 侧链(双链) | 通过提供本地和公共区块链,配合混合共识机制,来解决可扩展性问题 通过父区块链和辅助区块链,配合不同的共识机制,来解决可扩展性问题 通过提供本地区块链(由RSU维护)和全球区块链(由执法机构维护),配合混合共识机制,来解决可扩展性问题 |
Zhang等[ | DAG | 通过混合的区块链体系结构,由主许可区块链和车辆运行的局部有向无环图DAG组成,来解决可扩展性问题 |
Yun等[ | 分片 | 区块链节点的网络被分割成不同的碎片,每一个碎片都能形成独立的处理过程并在不同的交易子集上达成共识,并行处理相互之间未建立连接的交易子集,通过提高数量级来提高交易吞吐量 |
Table 3 Research on scalability model
相关文献 | 可扩展性方法 | 特点 |
---|---|---|
Chai等[ | 分层 | 通过分层链的设计,解决对单个节点的存储压力、计算压力,提高了系统的可扩展性 |
Shrestha等[ Zhang等[ Yang等[ | 侧链(双链) | 通过提供本地和公共区块链,配合混合共识机制,来解决可扩展性问题 通过父区块链和辅助区块链,配合不同的共识机制,来解决可扩展性问题 通过提供本地区块链(由RSU维护)和全球区块链(由执法机构维护),配合混合共识机制,来解决可扩展性问题 |
Zhang等[ | DAG | 通过混合的区块链体系结构,由主许可区块链和车辆运行的局部有向无环图DAG组成,来解决可扩展性问题 |
Yun等[ | 分片 | 区块链节点的网络被分割成不同的碎片,每一个碎片都能形成独立的处理过程并在不同的交易子集上达成共识,并行处理相互之间未建立连接的交易子集,通过提高数量级来提高交易吞吐量 |
相关文献 | 数据存储位置 | 数据共享过程 | 特点 |
---|---|---|---|
Liu等[ | 数据存储在云服务中 | 车辆-云存储-实体 | 数据存储到云服务器中,而数据的索引存储在区块链 |
Yang等[ | 数据存储在分布式文件中 | 车辆-分布式存储-实体 | 数据存储到如DHT(distributed Hash table)[ |
Liu等[ | 数据存储在RSU中 | 车辆-RSU-实体 | RSU共同维护区块的生成、验证和存储,实现分布式数据存储 |
Cui等[ | 数据存储在车辆中 | 车辆-其他车辆-实体 | 由车辆维护区块的生成、验证和存储,实现分布式数据存储 |
Table 4 Research on storage mode
相关文献 | 数据存储位置 | 数据共享过程 | 特点 |
---|---|---|---|
Liu等[ | 数据存储在云服务中 | 车辆-云存储-实体 | 数据存储到云服务器中,而数据的索引存储在区块链 |
Yang等[ | 数据存储在分布式文件中 | 车辆-分布式存储-实体 | 数据存储到如DHT(distributed Hash table)[ |
Liu等[ | 数据存储在RSU中 | 车辆-RSU-实体 | RSU共同维护区块的生成、验证和存储,实现分布式数据存储 |
Cui等[ | 数据存储在车辆中 | 车辆-其他车辆-实体 | 由车辆维护区块的生成、验证和存储,实现分布式数据存储 |
相关文献 | 模型类别 | 缺点 | 优点 |
---|---|---|---|
[ | 云存储-车联网数据共享模型 | 实体信息存储在云平台,数据隐私得不到有效保证 | 对区块链存储友好,系统扩展性强,模块功能扩展易 |
[ | 链上分布式存储-车联网数据共享模型 | 需要可信机构分发密钥,对区块链存储压力大 | 实体信息存储在分布式存储文件中如IPFS、DHT、Swarm、BigchainDB等,节省了中心化存储的建设成本 |
[ | 链下分布式存储-车联网数据共享模型 | 需要可信中心分发密钥,对设备需求大,造价高,存储压力大,存在数据提供商数据泄漏的风险 | 共享速率高,服务质量、数据存储与隐私安全得到保障 |
Table 5 Comparison between data sharing models
相关文献 | 模型类别 | 缺点 | 优点 |
---|---|---|---|
[ | 云存储-车联网数据共享模型 | 实体信息存储在云平台,数据隐私得不到有效保证 | 对区块链存储友好,系统扩展性强,模块功能扩展易 |
[ | 链上分布式存储-车联网数据共享模型 | 需要可信机构分发密钥,对区块链存储压力大 | 实体信息存储在分布式存储文件中如IPFS、DHT、Swarm、BigchainDB等,节省了中心化存储的建设成本 |
[ | 链下分布式存储-车联网数据共享模型 | 需要可信中心分发密钥,对设备需求大,造价高,存储压力大,存在数据提供商数据泄漏的风险 | 共享速率高,服务质量、数据存储与隐私安全得到保障 |
[1] | CHEUNG S. Implementation and application of big data platform for the Internet of vehicles[C]// Proceedings of the 8th International Conference on Power Electronics Systems and Applications, Hong Kong, China, Dec 7-10, 2020. Pis-cataway: IEEE, 2020: 1-5. |
[2] |
ZHANG J, CUI J, ZHONG H, et al. PA-CRT: Chinese remainder theorem based conditional privacy-preserving authentication scheme in vehicular ad-hoc networks[J]. IEEE Transactions on Dependable and Secure Computing, 2019, 18(2): 722-735.
DOI URL |
[3] |
ZHANG J W, LI T, OBAIDAT M S, et al. Enabling efficient data sharing with auditable user revocation for IoV systems[J]. IEEE Systems Journal, 2021, 16(1): 1355-1366.
DOI URL |
[4] | LI L, LIU J Q, CHENG L C, et al. CreditCoin: a privacy-preserving blockchain-based incentive announcement net-work for communications of smart vehicles[J]. IEEE Trans-actions on Intelligent Transportation Systems, 2018, 19(7): 2204-2220. |
[5] |
LAI C Z, ZHANG M, CAO J, et al. SPIR: a secure and privacy-preserving incentive scheme for reliable real-time map updates[J]. IEEE Internet of Things Journal, 2019, 7(1): 416-428.
DOI URL |
[6] |
KANG J W, YU R, HUANG X, et al. Blockchain for secure and efficient data sharing in vehicular edge computing and networks[J]. IEEE Internet of Things Journal, 2019, 6(3): 4660-4670.
DOI URL |
[7] | DANDALA T T, KRISHNAMURTHY V, ALWAN R. Internet of vehicles (IoV) for traffic management[C]// Pro-ceedings of the 2017 International Conference on Computer, Communication and Signal Processing,Chennai, Jan 10-11, 2017. Piscataway: IEEE, 2017: 1-4. |
[8] |
CHEN C, JINNA H, QIU T, et al. CVCG: cooperative V2V-aided transmission scheme based on coalitional game for popular content distribution in vehicular ad-hoc networks[J]. IEEE Transactions on Mobile Computing, 2018, 18(12): 2811-2828.
DOI URL |
[9] | KHELIFI H, LUO S L, NOUR B, et al. Named data net-working in vehicular ad hoc networks: state-of-the-art and challenges[J]. IEEE Communications Surveys & Tutorials, 2020, 22(1): 320-351. |
[10] |
CONTRERAS-CASTILLO J, ZEADALLY S, IBÁÑEZ J A G. A seven-layered model architecture for Internet of vehicles[J]. Journal of Information and Telecommunication, 2017, 1(1): 4-22.
DOI URL |
[11] |
QURESHI K N, DIN S, JEON G, et al. Internet of vehicles: key technologies, network model, solutions and challenges with future aspects[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 22(3): 1777-1786.
DOI URL |
[12] | 刘敖迪, 杜学绘, 王娜, 等. 区块链技术及其在信息安全领域的研究进展[J]. 软件学报, 2018, 29(7): 2092-2115. |
LIU A D, DU X H, WANG N, et al. Research progress of blockchain technology and its application in information security[J]. Journal of Software, 2018, 29(7): 2092-2115. | |
[13] | ZHANG Q X. An overview and analysis of hybrid encryption: the combination of symmetric encryption and asymmetric encryption[C]// Proceedings of the 2nd International Con-ference on Computing and Data Science, Stanford, Jan 28-29, 2021. Piscataway: IEEE, 2021: 616-622. |
[14] | ESSAID M, PARK S J, JU H. Visualising bitcoin’s dynamic P2P network topology and performance[C]// Proceedings of the IEEE 2019 International Conference on Blockchain and Cryptocurrency, Korea, May 14-17, 2019. Piscataway: IEEE, 2019: 141-145. |
[15] | JUDMAYER A, STIFTER N, KROMBHOLZ K, et al. Blocks and chains introduction to bitcoin, cryptocurrencies and their consensus mechanisms[J]. Synthesis Lectures on Information Security Privacy and Trust, 2017, 9(1): 1-123. |
[16] |
WANG W B, HOANG D T, HU P Z, et al. A survey on consensus mechanisms and mining strategy management in blockchain networks[J]. IEEE Access, 2019, 7: 22328-22370.
DOI URL |
[17] | BENČIĆ F M, ŽARKO I P. Distributed ledger technology: blockchain compared to directed acyclic graph[C]// Procee-dings of the 38th IEEE International Conference on Distri-buted Computing Systems, Vienna, Jul 2-6, 2018. Washing-ton: IEEE Computer Society, 2018: 1569-1570. |
[18] | ABUHASHIM A A, TAN C C. Smart contract designs on blockchain applications[C]// Proceedings of the 2020 IEEE Symposium on Computers and Communications, Rennes, Jul 7-10, 2020. Piscataway: IEEE, 2020: 15-26. |
[19] | 王群, 李馥娟, 王振力, 等. 区块链原理及关键技术[J]. 计算机科学与探索, 2020, 14(10): 1621-1643. |
WANG Q, LI F J, WANG Z L, et al. Principle and core technology of blockchain[J]. Journal of Frontiers of Com-puter Science and Technology, 2020, 14(10): 1621-1643. | |
[20] | CHOWDHURY M, GAWANDE A, WANG L. Secure infor-mation sharing among autonomous vehicles in NDN[C]// Proceedings of the 2nd International Conference on Internet-of-Things Design and Implementation, Pittsburgh, Apr 18-21, 2017. New York: ACM, 2017: 15-25. |
[21] |
SHERIF A B T, RABIEH K, MAHMOUD M M E A, et al. Privacy-preserving ride sharing scheme for autonomous vehicles in big data era[J]. IEEE Internet of Things Journal, 2017, 4(2): 611-618.
DOI URL |
[22] |
SHEN J, ZHOU T Q, LAI J F, et al. Secure and efficient data sharing in dynamic vehicular networks[J]. IEEE Internet of Things Journal, 2020, 7(9): 8208-8217.
DOI URL |
[23] | ZHANG M M, WO T, XIE T. A platform solution of data-quality improvement for Internet-of-vehicle services[C]// Proceedings of the 2018 IEEE International Conference on Pervasive Computing and Communications, Athens, Mar 19-23, 2018. Washington: IEEE Computer Society, 2018: 1-7. |
[24] | WANG Y H. A trust management model for Internet of vehicles[C]// Proceedings of the 4th International Conference on Cryptography, Security and Privacy, Nanjing, Jan 10-12, 2020. New York: ACM, 2020: 136-140. |
[25] | SINGH M, KIM S. Blockchain based intelligent vehicle data sharing framework[J]. arXiv:1708.09721, 2017. |
[26] | LIU B, YU X L, CHEN S P, et al. Blockchain based data integrity service framework for IoT data[C]// Proceedings of the 2017 IEEE International Conference on Web Services, Honolulu, Jun 25-30, 2017. Piscataway: IEEE, 2017: 468-475. |
[27] | YUAN Y, WANG F Y. Towards blockchain-based intelligent transportation systems[C]// Proceedings of the 19th IEEE International Conference on Intelligent Transportation Sys-tems, Rio de Janeiro, Nov 1-4, 2016. Piscataway: IEEE, 2016: 2663-2668. |
[28] | KOHLI P, SHARMA S, MATTA P. Security of cloud-based vehicular ad-hoc communication networks, challenges and solutions[C]// Proceedings of the 6th International Confer-ence on Wireless Communications, Signal Processing and Networking, Chennai, Mar 25-27, 2021. Piscataway: IEEE, 2021: 283-287. |
[29] | SHARMA S, SHARMA A, GOEL T, et al. Smart home gardening management system: a cloud-based Internet-of-things (IoT) application in VANET[C]// Proceedings of the 11th International Conference on Computing, Communica-tion and Networking Technologies, Kharagpur, Jul 1-3, 2020. Piscataway: IEEE, 2020: 1-5. |
[30] | LYAMIN N, KLEYKO D, DELOOZ Q, et al. AI-based malicious network traffic detection in VANETs[J]. IEEE Network, 2018, 32(6): 15-21. |
[31] | SHARMA N, CHAUHAN N, CHAND N. Security challenges in Internet of vehicles (IoV) environment[C]// Proceedings of the 1st International Conference on Secure Cyber Com-puting and Communication, Jalandhar, Dec 15-17, 2018. Piscataway: IEEE, 2018: 203-207. |
[32] | LISHCHUK R. Auto tracking company leaks hundreds of thousands of records online[EB/OL]. (2017-09-21)[2021-09-25]. https://mackeeper.com/blog/post/auto-tracking-company-leaks-hundreds-of-thousands-of-records-online/. |
[33] | YUAN Y, WANG F Y. Towards blockchain-based intelligent transportation systems[C]// Proceedings of the 19th IEEE International Conference on Intelligent Transportation Sys-tems, Rio de Janeiro, Nov 1-4, 2016. Piscataway: IEEE, 2016: 2663-2668. |
[34] | LEIDING B, MEMARMOSHREFI P, HOGREFE D. Self-managed and blockchain-based vehicular ad-hoc networks[C]// Proceedings of the 2016 ACM International Joint Con-ference on Pervasive and Ubiquitous Computing, Heidelberg, Sep 12-16, 2016. New York: ACM, 2016: 137-140. |
[35] |
YANG Z, YANG K, LEI L, et al. Blockchain-based decen-tralized trust management in vehicular networks[J]. IEEE Internet of Things Journal, 2018, 6(2): 1495-1505.
DOI URL |
[36] |
CEBE M, ERGIN E, AKKAYA K, et al. Block4Forensic: an integrated lightweight blockchain framework for forensics applications of connected vehicles[J]. IEEE Communications Magazine, 2018, 56(10): 50-57.
DOI URL |
[37] |
LI M, ZHU L H, Lin X D. Efficient and privacy-preserving carpooling using blockchain-assisted vehicular fog computing[J]. IEEE Internet of Things Journal, 2019, 6(3): 4573-4584.
DOI URL |
[38] |
LIU A, WANG W Q, SHANG S, et al. Efficient task assign-ment in spatial crowdsourcing with worker and task privacy protection[J]. Geoinformatica, 2018, 22(2): 335-362.
DOI URL |
[39] | ALOUFI E, ALHARTHI R, ZOHDY M, et al. An efficient approach for task assignment in spatial crowdsourcing[C]// Proceedings of the 2020 IEEE International IOT, Electronics and Mechatronics Conference, Vancouver, Sep 9-12, 2020. Piscataway: IEEE, 2020: 1-5. |
[40] |
ZHANG J W, YANG F, MA Z, et al. A decentralized location privacy-preserving spatial crowdsourcing for Internet of vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(4): 2299-2313.
DOI URL |
[41] | HUANG C, LU R X, ZHU H. Privacy-friendly spatial crowd-sourcing in vehicular networks[J]. Journal of Communica-tions and Information Networks, 2017, 2(2): 59-74. |
[42] |
ZHAO Y, ZHENG K, LI Y, et al. Destination-aware task assignment in spatial crowdsourcing: a worker decomposi-tion approach[J]. IEEE Transactions on Knowledge and Data Engineering, 2020, 32(12): 2336-2350.
DOI URL |
[43] | HADIAN M, ALTUWAIYAN T, LIANG X, et al. Privacy-preserving task scheduling for time-sharing services of au-tonomous vehicles[J]. IEEE Transactions on Vehicular Tech-nology, 2019, 68(6): 5260-5270. |
[44] | QIU C, YU F R, XU F M, et al. Blockchain-based distri-buted software-defined vehicular networks via deep Q-learning[C]// Proceedings of the 8th ACM Symposium on Design and Analysis of Intelligent Vehicular Networks and Applications, Montreal, Oct 28-Nov 2, 2018. New York: ACM, 2018. |
[45] | LIN H, GARG S, HU J, et al. Blockchain and deep reinfor-cement learning empowered spatial crowdsourcing in software-defined Internet of vehicles[J]. IEEE Transactions on Intel-ligent Transportation Systems, 2021, 22(6): 3755-3764. |
[46] | KONEČNÝ J, MCMAHAN H B, YU F X, et al. Federated learning: strategies for improving communication efficiency[J]. arXiv:1610.05492, 2016. |
[47] | MCMAHAN H B, MOORE E, RAMAGE D, et al. Commu-nication-efficient learning of deep networks from decentra-lized data[C]// Proceedings of the 20th International Confer-ence on Artificial Intelligence and Statistics, Fort Lauder-dale, Apr 20-22, 2017: 1273-1282. |
[48] |
DU Z Y, WU C, YOSHINAGA T, et al. Federated learning for vehicular Internet of things: recent advances and open issues[J]. IEEE Open Journal of the Computer Society, 2020, 1: 45-61.
DOI URL |
[49] |
ZHANG X R, PENG M G, YAN S, et al. Deep-reinforcement-learning-based mode selection and resource allocation for cellular V2X communications[J]. IEEE Internet of Things Journal, 2020, 7(7): 6380-6391.
DOI URL |
[50] |
QI Y H, HOSSAIN M S, NIE J T, et al. Privacy-preserving blockchain-based federated learning for traffic flow predic-tion[J]. Future Generation Computer Systems, 2021, 117: 328-337.
DOI URL |
[51] | ZOU Y, SHEN F, YAN F, et al. Reputation-based regional federated learning for knowledge trading in blockchain-enhanced IoV[C]// Proceedings of the 2021 IEEE Wireless Communications and Networking Conference, Nanjing, Mar 29-Apr 1, 2021. Piscataway: IEEE, 2021: 1-6. |
[52] | MUKHOPADHYAY U, SKJELLUM A, HAMBOLU O, et al. A brief survey of cryptocurrency systems[C]// Proceedings of the 14th Annual Conference on Privacy, Security and Trust, Auckland, Dec 12-14, 2016. Piscataway: IEEE, 2016: 745-752. |
[53] |
KANG J W, XIONG Z H, NIYATO D, et al. Toward secure blockchain-enabled Internet of vehicles: optimizing consensus management using reputation and contract theory[J]. IEEE Transactions on Vehicular Technology, 2019, 68(3): 2906-2920.
DOI URL |
[54] | FUJIHARA A. Proposing a system for collaborative traffic information gathering and sharing incentivized by blockchain technology[C]// Proceedings of the 10th International Con-ference on Intelligent Networking and Collaborative Systems, Bratislava, Sep 5-7, 2018. Cham: Springer, 2018: 170-182. |
[55] |
ZHANG L, LUO M X, LI J T, et al. Blockchain based secure data sharing system for Internet of vehicles: a position paper[J]. Vehicular Communications, 2019, 16: 85-93.
DOI URL |
[56] |
CHEN W H, CHEN Y F, CHEN X, et al. Toward secure data sharing for the IoV: a quality-driven incentive mechanism with on-chain and off-chain guarantees[J]. IEEE Internet of Things Journal, 2020, 7(3): 1625-1640.
DOI URL |
[57] |
CHEN C, WANG C, QIU T, et al. A secure content sharing scheme based on consortium bolckchain in vehicular named data networks[J]. IEEE Transactions on Industrial Informatics, 2019, 16(5): 3278-3289.
DOI URL |
[58] |
CHAI H Y, LENG S P, ZHANG K, et al. Proof-of-reputation based-consortium blockchain for trust resource sharing in Internet of vehicles[J]. IEEE Access, 2019, 7: 175744-175757.
DOI URL |
[59] |
KANG J W, YU R, HUANG X M, et al. Blockchain for secure and efficient data sharing in vehicular edge computing and networks[J]. IEEE Internet of Things Journal, 2019, 6(3): 4660-4670.
DOI URL |
[60] | QAZI F, KHAN F H. Enhancing the security of vehicle to road side unit (RSU) communication with key generation and advanced encryption procedure in vehicular ad-hoc network (VANET)[J]. Indian Journal of Science and Technology, 2017, 10: 36. |
[61] | JEMEL M, SERHROUCHNI A. Decentralized access control mechanism with temporal dimension based on blockchain[C]// Proceedings of the 14th IEEE International Conference on e-Business Engineering, Shanghai, Nov 4-6, 2017. Washing-ton: IEEE Computer Society, 2017: 177-182. |
[62] | AFNAN A, TAYLOR B D. Attribute-based access control of data sharing based on hyperledger blockchain[C]// Pro-ceedings of the 2nd International Conference on Blockchain Technology, Hilo, Mar 12-14, 2020. New York: ACM, 2020: 135-139. |
[63] | 刘雪娇, 殷一丹, 陈蔚, 等. 基于区块链的车联网数据安全共享方案[J]. 浙江大学学报(工学版), 2021, 55(5): 957-965. |
LIU X J, YIN Y D, CHEN W, et al. Data security sharing scheme of Internet of vehicles based on blockchain[J]. Journal of Zhejiang University (Engineering Edition), 2021, 55(5): 957-965. | |
[64] | KANUMALLI S S, CH A, SRI P. Secure V2V communica-tion in IOV using IBE and PKI based hybrid approach[J]. International Journal of Advanced Computer Science and Applications, 2020, 11(1): 466-472. |
[65] | OHAM C, JURDAK R, KANHERE S S, et al. B-FICA: blockchain based framework for auto-insurance claim and adjudication[C]// Proceedings of the 2018 IEEE International Conference on Internet of Things and IEEE Green Com-puting and Communications and IEEE Cyber, Physical and Social Computing and IEEE Smart Data, Halifax, Jul 30-Aug 3, 2018. Piscataway: IEEE, 2018: 1171-1180. |
[66] | PORWAL S, MITTAL S. Design of concurrent ciphertext policy-attribute based encryption library for multilevel access of encrypted data[C]// Proceedings of the 2018 International Conference on Parallel, Distributed and Grid Computing, Solan Himachal Pradesh, Dec 20-22, 2018. Piscataway: IEEE, 2018: 42-47. |
[67] | 郑良汉, 何亨, 童潜, 等. 云环境中的多授权机构访问控制方案[J]. 计算机科学与探索, 2020, 14(11): 1865-1878. |
ZHENG L H, HE H, TONG Q, et al. Multi-authority access control scheme in cloud environment[J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(11): 1865-1878. | |
[68] | ZOU J, DONG Z L, SHAO A, et al. 3D-DAG: a high per-formance DAG network with eventual consistency and finality[C]// Proceedings of the 1st IEEE International Conference on Hot Information-Centric Networking, Shenzhen, Aug 15-17, 2018. Piscataway: IEEE, 2018: 262-263. |
[69] |
CHAI H Y, LENG S P, CHEN Y J, et al. A hierarchical blockchain-enabled federated learning algorithm for know-ledge sharing in Internet of vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(7): 3975-3986.
DOI URL |
[70] | SHRESTHA R, BAJRACHARYA R, SHRESTHA A P, et al. A new-type of blockchain for secure message exchange in VANET[J]. Digit Communication and Network, 2020, 6(2): 177-186. |
[71] |
ZHANG L, LUO M X, LI J T, et al. Blockchain based secure data sharing system for Internet of vehicles: a position paper[J]. Vehicular Communications, 2019, 16: 85-93.
DOI URL |
[72] |
YANG Y T, CHOU L D, TSENG C W, et al. Blockchain-based traffic event validation and trust verification for VANETs[J]. IEEE Access, 2019, 7: 30868-30877.
DOI URL |
[73] |
ZHANG Y L, HUANG X H, ZHANG K, et al. Blockchain empowered asynchronous federated learning for secure data sharing in Internet of vehicles[J]. IEEE Transactions on Vehicular Technology, 2020, 69(4): 4298-4311.
DOI URL |
[74] |
YUN J, GOH Y, CHUNG J M. DQN-based optimization framework for secure sharded blockchain systems[J]. IEEE Internet of Things Journal, 2021, 8(2): 708-722.
DOI URL |
[75] | LIU J W, ZHANG G J, SUN R, et al. A blockchain-based conditional privacy-preserving traffic data sharing in cloud[C]// Proceedings of the 2020 IEEE International Conference on Communications, Dublin, Jun 7-11, 2020. Piscataway: IEEE, 2020: 1-6. |
[76] | 杨颜博, 张嘉伟, 马建峰. 一种使用区块链保护车联网数据隐私的方法[J]. 西安电子科技大学学报(自然科学版), 2021, 48(3): 21-30. |
YANG Y B, ZHANG J W, MA J F. Method for using the blockchain to protect data privacy of IoV[J]. Journal of Xidian University (Natural Science), 2021, 48(3): 21-30. | |
[77] | MASOOD R, PANDEY N, RANA Q P. DHT-PDP: a distri-buted hash table based provable data possession mechanism in cloud storage[C]// Proceedings of the 2020 8th International Conference on Reliability, Infocom Technologies and Opti-mization (Trends and Future Directions), Noida, Jun 4-5, 2020. Piscataway: IEEE, 2020: 275-279. |
[78] | ROWAN S, CLEAR M, GERLA M, et al. Securing vehicle to vehicle communications using blockchain through visible light and acoustic side-channels[J]. arXiv:1704.02553, 2017. |
[79] |
KUMAR R, KUMAR P, TRIPATHI G P, et al. P2SF-IoV: a privacy-preservation-based secured framework for Internet of vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2021. DOI: 10.1109/TITS.2021.3102581.
DOI |
[80] |
CUI J, OUYANG F, YING Z, et al. Secure and efficient data sharing among vehicles based on consortium blockchain[J]. Transactions on Intelligent Transportation Systems, 2021. DOI: 10.1109/TITS.2021.3086976.
DOI |
[81] |
LIU Y B, WANG Y H, CHANG G H. Efficient privacy-preserving dual authentication and key agreement scheme for secure V2V communications in an IoV paradigm[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(10): 2740-2749.
DOI URL |
[82] | NAKAMOTO S. Bitcoin: a peer-to-peer electronic cash system[R/OL]. (2008)[2021-08-22]. https://bitcoin.org/. |
[83] | BUTERIN V. A next-generation smart contract and decen-tralized application platform[R/OL]. (2014)[2021-08-22]. https://ethereum.org/en/whitepaper/. |
[84] | YANG R Z, YU F R, SI P B, et al. Integrated blockchain and edge computing systems: a survey, some research issues and challenges[J]. IEEE Communications Surveys & Tuto-rials, 2019, 21(2): 1508-1532. |
[85] |
ZHOU L J, WANG L C, SUN Y R, et al. BeeKeeper: a blockchain-based IoT system with secure storage and homo-morphic computation[J]. IEEE Access, 2018, 6: 43472-43488.
DOI URL |
[86] | 贾大宇, 信俊昌, 王之琼, 等. 区块链的存储容量可扩展模型[J]. 计算机科学与探索, 2018, 12(4): 525-535. |
JIA D Y, XIN J C, WANG Z Q, et al. Storage capacity scalable model for blockchain[J]. Journal of Frontiers of Computer Science and Technology, 2018, 12(4): 525-535. | |
[87] | 史锦山, 李茹. 物联网下的区块链访问控制综述[J]. 软件学报, 2019, 30(6): 1632-1648. |
SHI J S, LI R. Survey of blockchain access control in Internet of things[J]. Journal of Software, 2019, 30(6): 1632-1648. | |
[88] |
YANG Y C, WU L F, YIN G S, et al. A survey on security and privacy issues in Internet-of-things[J]. IEEE Internet of Things Journal, 2017, 4(5): 1250-1258.
DOI URL |
[89] |
CORLHO F C. Optimizing disease surveillance by reporting on the blockchain[J]. bioRxiv, 2018. DOI: 10.1101/278473.
DOI |
[90] | HUEBER O. The blockchain and the sidechain innovations for the electronic commerce beyond the Bitcoin’s framework[J]. International Journal of Transitions and Innovation Sys-tems, 2018, 6(1): 88-102. |
[91] |
WAN S H, GU R H, UMER T, et al. Toward offloading Internet of vehicles applications in 5G networks[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(7): 4151-4159.
DOI URL |
[92] |
WANG Y C, TIAN Y Y, HEI X H, et al. A novel IoV block-streaming service awareness and trusted verification scheme in 6G[J]. IEEE Transactions on Vehicular Technology, 2021, 70(6): 5197-5210.
DOI URL |
[1] | LIU Tonglai, ZHANG Zikai, WU Jigang. System Model and Access Control Schemes for Medical Image Collaborative Analysis [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(8): 1779-1791. |
[2] | WANG Qun, LI Fujuan, NI Xueli, XIA Lingling, WANG Zhenli, LIANG Guangjun. Survey on Blockchain Consensus Algorithms and Application [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(6): 1214-1242. |
[3] | HAN Gang, LYU Yingze, LUO Wei, WANG Jiaqian. Privacy Data Protection Scheme for Patients with Major Outbreaks [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(2): 359-371. |
[4] | FAN Xing, NIU Baoning. BBF: Bloom Filter Variant for Blockchain [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(10): 1921-1929. |
[5] | ZHOU Jian, SUN Liyan, FU Ming. Research on Wallet Protection Against Currency Failure in Blockchain [J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(12): 2039-2049. |
[6] | ZHENG Lianghan, HE Heng, TONG Qian, YANG Xiang, CHEN Xiang. Multi-authority Access Control Scheme in Cloud Environment [J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(11): 1865-1878. |
[7] | WANG Qun, LI Fujuan, WANG Zhenli, LIANG Guangjun, XU Jie. Principle and Core Technology of Blockchain [J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(10): 1621-1643. |
[8] | JIA Dayu, XIN Junchang, WANG Zhiqiong, GUO Wei, WANG Guoren. Storage Capacity Scalable Model for Blockchain [J]. Journal of Frontiers of Computer Science and Technology, 2018, 12(4): 525-535. |
[9] | DUAN Linxia, SUN Xiaoyan, WANG Zhihui. Selection Algorithm for Heterogeneous Network Oriented to Transmission of Safety Application Message [J]. Journal of Frontiers of Computer Science and Technology, 2018, 12(4): 595-607. |
[10] | SUN Xiaoyan, DUAN Linxia, YAO Chenhong. Research on QoS of Safety Application Messages Oriented Access Protocol [J]. Journal of Frontiers of Computer Science and Technology, 2017, 11(12): 1972-1983. |
[11] | LI Zhoujun, ZHANG Jiangxiao, FENG Chunhui, SUI Chunrong. Survey on E-Cash Scheme [J]. Journal of Frontiers of Computer Science and Technology, 2017, 11(11): 1701-1712. |
[12] | LI Ning, ZHU Qing. Privacy Preserving Based on Model Division for Large Data [J]. Journal of Frontiers of Computer Science and Technology, 2012, 6(11): 961-973. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/