Journal of Frontiers of Computer Science and Technology ›› 2022, Vol. 16 ›› Issue (9): 1969-1989.DOI: 10.3778/j.issn.1673-9418.2203127

• Surveys and Frontiers • Previous Articles     Next Articles

Progress on Machine Learning for Regional Financial Risk Prevention

ZHANG Lihua1, ZHANG Shunshun2,+()   

  1. 1. School of Finance and Trade, Wenzhou Business College, Wenzhou, Zhejiang 325000, China
    2. King's Business School, King's College London, London WC2B 4BG, UK
  • Received:2022-03-30 Revised:2022-06-08 Online:2022-09-01 Published:2022-09-15
  • About author:ZHANG Lihua, born in 1963, Ph.D., professor. His research interests include machine learning,financial big data and financial risks modelling.
    ZHANG Shunshun, born in 1996, Ph.D. candidate. Her research interests include behavioral finance, machine-learning textual analysis and financial big data.
  • Supported by:
    Major Project of the National Social Science Foundation of China(18ZDA093)

机器学习解构区域金融风险防控研究进展

张立华1, 张顺顺2,+()   

  1. 1.温州商学院 金融贸易学院,浙江 温州 325000
    2.伦敦大学国王学院 国王商学院,伦敦 WC2B 4BG
  • 通讯作者: + E-mail: 1504886520@qq.com
  • 作者简介:张立华(1963—),男,北京人,博士,教授,主要研究方向为机器学习、金融大数据、金融风险建模。
    张顺顺(1996—),女,北京人,博士研究生,主要研究方向为行为金融、机器学习文本分析、金融大数据。
  • 基金资助:
    国家社会科学基金重大项目(18ZDA093)

Abstract:

The regional financial risks prevention (RFRP) is indispensable in managing the regional traditional financial risks (TFR) or preventing the regional financial systemic risks (FSR). With the growing of big data and the uncertainty of financial risk types, traditional econometrics methods are facing insurmountable difficulties in terms of the efficiency, accuracy, and application of financial risk prevention modeling. Today, increasing future methods and technologies for machine learning (ML) for RFRP prevention have been paid much attention by researchers. A new scientific classification of RFRP prevention and conceptual basis of ML methods are firstly put forward.Secondly, this paper summarizes the ML methods and application of regional TFR prevention, compares their key logic, model algorithm and learning effect of the representative literature, and categorizes the advantages, limitations and traditional scenarios of ML methods. Thirdly, it combs the ML methods and application of regional FSR prevention, analyzes the key context, ML algorithm and learning effect of the seminal documents, and compares the benefits, disadvantages and financial risk contexts of ML methods. Finally, six promising technologies and emerging directions of ML methods for RFRP prevention are proposed.

Key words: machine learning (ML), regional financial risk prevention (RFRP), traditional financial risk (TFR), financial systemic risk (FSR)

摘要:

区域金融风险防控(RFRP)无论在管理区域传统金融风险(TFR)还是坚守不发生区域金融系统风险(FSR)中都是不可或缺的。随着大数据规模的持续增长,金融风险形态变化的不确定性,传统计量方法模拟金融风险防控的效率、精度、应用等方面都面临着无法克服的困境。当下,越来越多的机器学习(ML)模拟RFRP防控的新方法和新技术受到研究者的重视。首先提出了RFRP防控新的科学分类和ML观念基础;其次总结了区域TFR防控的ML理论方法和应用技术,对各类代表性研究所论述区域TFR防控的关键逻辑、模型算法、学习效果进行了比对解析,对ML不同方法的优点、局限和传统场景进行了归类分析;然后梳理了区域FSR防控的ML理论方法和应用研究,对各类典型文献所解析区域FSR防控的关键脉络、ML算法、学习效果进行了对比研究,对ML不同模型的优势、缺陷和金融风险场景进行了阐述研究;最后提出了六个ML模拟RFRP防控的前景技术和新兴方向。

关键词: 机器学习(ML), 区域金融风险防控(RFRP), 传统金融风险(TFR), 金融系统风险(FSR)

CLC Number: