Journal of Frontiers of Computer Science and Technology ›› 2022, Vol. 16 ›› Issue (6): 1279-1290.DOI: 10.3778/j.issn.1673-9418.2111144
• Surveys and Frontiers • Previous Articles Next Articles
LIU Yafen1,2, ZHENG Yifeng1,2,+(), JIANG Lingyi1,2, LI Guohe3, ZHANG Wenjie1,2
Received:
2021-11-02
Revised:
2022-01-05
Online:
2022-06-01
Published:
2022-01-17
About author:
LIU Yafen, born in 1999, M.S. candidate, member of CCF. Her research interests include machine learning and deep learning.Supported by:
刘雅芬1,2, 郑艺峰1,2,+(), 江铃燚1,2, 李国和3, 张文杰1,2
通讯作者:
+ E-mail: zyf@mnnu.edu.cn作者简介:
刘雅芬(1999—),女,福建南平人,硕士研究生,CCF会员,主要研究方向为机器学习、深度学习。基金资助:
CLC Number:
LIU Yafen, ZHENG Yifeng, JIANG Lingyi, LI Guohe, ZHANG Wenjie. Survey on Pseudo-Labeling Methods in Deep Semi-supervised Learning[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(6): 1279-1290.
刘雅芬, 郑艺峰, 江铃燚, 李国和, 张文杰. 深度半监督学习中伪标签方法综述[J]. 计算机科学与探索, 2022, 16(6): 1279-1290.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2111144
数据集 | 节点(样本) | 特征 | 类别 | 类别分布 |
---|---|---|---|---|
Iris | 150 | 4 | 3 | 50,50,50 |
Cmc | 1 473 | 9 | 3 | 629,333,511 |
Iono | 351 | 34 | 2 | 225,126 |
Table 1 UCI datasets used in experiment
数据集 | 节点(样本) | 特征 | 类别 | 类别分布 |
---|---|---|---|---|
Iris | 150 | 4 | 3 | 50,50,50 |
Cmc | 1 473 | 9 | 3 | 629,333,511 |
Iono | 351 | 34 | 2 | 225,126 |
方法 | CIFAR-10 | CIFAR-100 | ILSVRC-2012 |
---|---|---|---|
熵最小化 | 86.41 | — | 83.39 |
代理标签 | — | — | 82.41 |
噪声学生 | — | — | 88.39 |
元伪标签 | 88.62 | — | 90.20 |
自半监督 | — | — | 91.23 |
协同训练 | 90.97 | 65.37 | — |
三体训练 | 91.55 | 70.26 | — |
Table 2 Experimental results of pseudo-labeling method on different image datasets %
方法 | CIFAR-10 | CIFAR-100 | ILSVRC-2012 |
---|---|---|---|
熵最小化 | 86.41 | — | 83.39 |
代理标签 | — | — | 82.41 |
噪声学生 | — | — | 88.39 |
元伪标签 | 88.62 | — | 90.20 |
自半监督 | — | — | 91.23 |
协同训练 | 90.97 | 65.37 | — |
三体训练 | 91.55 | 70.26 | — |
方法 | Iris | Cmc | Ionosphere |
---|---|---|---|
协同训练 | 75.21 | 32.33 | 63.82 |
三体训练 | 80.03 | 35.92 | 64.13 |
标签传播 | 85.02 | 40.95 | 67.65 |
Table 3 Experimental results of pseudo-labeling method on different UCI datasets %
方法 | Iris | Cmc | Ionosphere |
---|---|---|---|
协同训练 | 75.21 | 32.33 | 63.82 |
三体训练 | 80.03 | 35.92 | 64.13 |
标签传播 | 85.02 | 40.95 | 67.65 |
[1] | SZELISKI R. Computer vision[M]. Berlin, Heidelberg: Spr-inger, 2011. |
[2] |
WANG X, SOUMITRA G, SUN W G. Quantitative quality control in microarray image processing and data acquisition[J]. Nucleic Acids Research, 2019, 29(15): 75-80.
DOI URL |
[3] | BILLINGSLEY F C. Applications of digital image processing[J]. Applied Optics, 1970, 9(2): 101-106. |
[4] | TSURUOKA Y. Deep Learning and natural language processing[J]. Brain and Nerve, 2019, 71(1): 45-55. |
[5] | DOWNS J M. Identifying suicidal adolescents from mental hea-lth records using natural language processing[J]. Studies in Health Technology and Informatics, 2019, 264: 413-417. |
[6] | 余凯, 贾磊, 陈雨强, 等. 深度学习的昨天、今天和明天[J]. 计算机研究与发展, 2013, 50(9): 1799-1804. |
YU K, JIA L, CHEN Y Q, et al. Deep learning yesterday, today and tomorrow[J]. Journal of Computer Research and Development, 2013, 50(9): 1799-1804. | |
[7] | OLIVIER C, BERNHARD S, ALEXANDER Z. Semi-supervised learning[J]. IEEE Transactions on Neural Net-works, 2009, 20(3): 542-543. |
[8] | YANG X L, SONG Z X, IRWIN K, et al. A survey on deep semi-supervised learning[J]. arXiv:2103.00550, 2021. |
[9] | MILLER D J, UYAR H S. A mixture of experts classifier with learning based on both labelled and unlabelled data[C]// Adva-nces in Neural Information Processing Systems 9, Denver, Dec 2-5, 1996. Cambridge: MIT Press, 1997: 571-577. |
[10] |
NIGAM K, MCCALLUM A, THRUN S, et al. Text classifi-cation from labeled and unlabeled documents using EM[J]. Machine Learning, 2000, 39(2/3): 103-134.
DOI URL |
[11] | SPRINGENBERG J T. Unsupervised and semi-supervised lear-ning with categorical generative adversarial networks[J]. Com-puter Science, 2015, 42(7): 70-85. |
[12] | ABBASNEJAD M E, DICK A R, VAN DEN HENGEL A R. Infinite variational autoencoder for semi-supervised learning[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 781-790. |
[13] | JOY T, SCHMON S M, TORR P H, et al. Rethinking semi-supervised learning in VAEs[J]. arXiv:2006.10102, 2020. |
[14] | ZHU X J. Semi-supervised learning literature survey[D]. Madison: University of Wisconsin, 2005. |
[15] | SAJJADI M, JAVANMARDI M, TASDIZEN T. Regulariza-tion with stochastic transformations and perturbations for deep semi supervised learning[C]// Advances in Neural Informa-tion Processing Systems 29, Barcelona, Dec 5-10, 2016. Red Hook: Curran Associates, 2016: 1163-1171. |
[16] | IZMAILOV P, PODOPRIKHIN D, GARIPOV T, et al. Avera-ging weights leads to wider optima and better generalization[C]// Proceedings of the 34th Conference on Uncertainty in Arti-ficial Intelligence, Monterey, Aug 6-10, 2018: 876-885. |
[17] | PARK S, PARK J, SHIN S, et al. Adversarial dropout for supervised and semi-supervised learning[C]// Proceedings of the 32nd AAAI Conference on Artificial Intelligence, the 30th Innovative Applications of Artificial Intelligence, and the 8th AAAI Symposium on Educational Advances in Arti-ficial Intelligence, New Orleans, Feb 2-7, 2018. Menlo Park: AAAI, 2018: 3917-3924. |
[18] | ZHU X J. Learning from labeled and unlabeled data with label propagation[R]. Carnegie Mellon University, 2002: 1-8. |
[19] | ZHU X J, GHAHRAMANI Z, LAFFERTY J D. Semi-supervised learning using Gaussian fields and harmonic functions[C]// Proceedings of the 20th International Conference on Machine Learning, Washington, Aug 21-24, 2003. Menlo Park: AAAI, 2003: 912-919. |
[20] | ZHOU D Y, BOUSQUET O, LAL T N, et al. Learning with local and global consistency[C]// Advances in Neural Informa-tion Processing Systems 16, Vancouver, Dec 8-13, 2003. Camb-ridge: MIT Press, 2003: 321-328. |
[21] | WANG D X, CUI P, ZHU W W. Structural deep network embe-dding[C]// Proceedings of the 22nd ACM SIGKDD Interna-tional Conference on Knowledge Discovery and Data Mining, San Francisco, Aug 13-17, 2016. New York: ACM, 2016: 1225-1234. |
[22] | CAO S, LU W, XU Q. Deep neural networks for learning graph representations[C]// Proceedings of the 30th AAAI Confe-rence on Artificial Intelligence, Phoenix, Feb 2-17, 2016. Menlo Park: AAAI, 2016: 1145-1152. |
[23] | KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[J]. arXiv:1609.02907, 2016. |
[24] | ZHANG H, CISS M, DAUPHIN Y N, et al. Mixup: beyond empirical risk minimization[J]. arXiv:1710.09412, 2017. |
[25] | VERMA V, LAMB A, KANNALA J, et al. Interpolation con-sistency training for semi-supervised learning[J]. Neural Net-works, 2019, 145: 90-106. |
[26] | BERTHELOT D, CARLINI N, GOODFELLOW I J, et al. Mixmatch: a holistic approach to semi-supervised learning[C]// Advances in Neural Information Processing Systems 32, Vancouver, Dec 8-14, 2019: 5050-5060. |
[27] | XIE J R, SZYMANSKI B K. LabelRank: a stabilized label propagation algorithm for community detection in networks[C]// Proceedings of the 2nd IEEE Network Science Work-shop, Thayer Hotel, Apr 29-May 1, 2013. Washington: IEEE Computer Society, 2013: 138-143. |
[28] | OLIVIER C, BERNHARD S, ALEXANDER Z. Semi-supervised learning[J]. IEEE Transactions on Neural Networks, 2009, 20(3): 542. |
[29] | DAVID Y. Unsupervised word sense disambiguation riva-ling supervised methods[C]// Proceedings of the 33rd Annual Meeting of the Association for Computational Linguistics, Cam-bridge, Jun 26-30, 1995. Stroudsburg: ACL, 1995: 189-196. |
[30] |
SCUDDER H. Probability of error of some adaptive pattern-recognition machines[J]. IEEE Transactions on Information Theory, 1965, 11(3): 363-371.
DOI URL |
[31] | RILOFF E. Automatically generating extraction patterns from untagged text[C]// Proceedings of the 13th National Confe-rence on Artificial Intelligence and 8th Innovative Applica-tions of Artificial Intelligence Conference, Portland, Aug 4-8, 1996. Menlo Park: AAAI, 1996: 1044-1049. |
[32] | 李南. 基于聚类假设的数据流分类算法[J]. 模式识别与人工智能, 2017, 30(1): 1-10. |
LI N. Clustering assumption based classification algorithm for stream data[J]. Pattern Recognition and Artificial Intelli-gence, 2017, 30(1): 1-10. | |
[33] | XI W, JANG U, CHEN L, et al. Manifold assumption and defenses against adversarial perturbations[J]. arXiv:1711.08001, 2017. |
[34] | LEE D H. Pseudo-Label: the simple and efficient semisuper-vised learning method for deep neural networks[C]// Procee-dings of the Workshop: Challenges in Representation Learning, Atlanta, Jun 16-21, 2013. New York: ACM, 2013: 1-6. |
[35] | YAROWSKY D. Unsupervised word sense disambiguation rivaling supervised methods[C]// Proceedings of the 33rd An-nual Meeting of the Association for Computational Linguis-tics, Cambridge, Jun 26-30, 1995. Stroudsburg: ACL, 1995: 189-196. |
[36] |
SCUDDER H. Probability of error of some adaptive pattern-recognition machines[J]. IEEE Transactions on Information Theory, 1965, 11(3): 363-371.
DOI URL |
[37] | YALNIZ I Z, JÉGOU H, CHEN K, et al. Billion-scale semi-supervised learning for image classification[J]. arXiv:1905.00546, 2019. |
[38] | GRANDVALET Y, BENGIO Y. Semi-supervised learning by entropy minimization[C]// Proceedings of the Conférence Fran-cophone sur l’apprentissage Automatique, Nice, 2005: 281-296. |
[39] | OLIVER A, ODENA A, RAFFEL C, et al. Realistic evalua-tion of deep semi-supervised learning algorithms[C]// Adva-nces in Neural Information Processing Systems 31, Mont-réal, Dec 3-8, 2018: 3239-3250. |
[40] | SHI W W, GONG Y H, DING C, et al. Transductive semi-supervised deep learning using min-max features[C]// LNCS 11209: Proceedings of the 15th European Conference on Com-puter Vision, Munich, Sep 8-14, 2018. Cham: Springer, 2018: 311-327. |
[41] | ISCEN A, TOLIAS G, AVRITHIS Y, et al. Label propagation for deep semi-supervised learning[C]// Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recogni-tion, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 5070-5079. |
[42] | ARAZO E, DIEGO O, PAUL A, et al. Pseudo-labeling and confirmation bias in deep semi-supervised learning[J]. arXiv:1908.02983, 2019. |
[43] | XIE Q, LU M, HOVY E H, et al. Self-training with noisy student improves ImageNet classification[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pat-tern Recognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 10684-10695. |
[44] | HINTON G E, VINYALS O, DEAN J. Distilling the know-ledge in a neural network[J]. arXiv:1503.02531, 2015. |
[45] | TAN M X, LE Q V. EfficientNet: rethinking model scaling for convolutional neural networks[J]. arXiv:1905.11946v5, 2019. |
[46] | LIU Y, LIM H, XIE L. Exploration of chemical space with partial labeled noisy student self-training for improving deep learning: application to drug metabolism[EB/OL]. [2021-08-23]. https://doi.org/10.1101/2020.08.06.239988. |
[47] | KUMAR V, RAO S, YU L. Noisy student training using body language dataset improves facial expression recognition[C]// LNCS 12535: Proceedings of the 16th ECCV Workshops on Computer Vision, Glasgow, Aug 23-28, 2020. Cham: Spri-nger, 2020: 756-773. |
[48] | BEYER L, ZHAI X H, OLIVER A, et al. S4L: self-super-vised semi-supervised learning[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 1476-1485. |
[49] | PHAM H, DAI Z H, XIE Q Z, et al. Meta pseudo labels[J]. arXiv:2003.10580, 2020. |
[50] | KUMAR A, DAUMÉ Ⅲ H. A co-training approach for multi-view spectral clustering[C]// Proceedings of the 28th Interna-tional Conference on Machine Learning, Bellevue, Jun 28-Jul 2, 2011. Madison: Omni Press, 2011: 393-400. |
[51] |
ZHAO J, XIE X J, XU X, et al. Multi-view learning over-view: recent progress and new challenges[J]. Information Fusion, 2017, 38: 43-54.
DOI URL |
[52] | BLUM A, MITCHELL T M. Combining labeled and unlabeled data with co-training[C]// Proceedings of the 11th Annual Confe-rence on Computational Learning Theory, Madison, Jul 24-26, 1998. New York: ACM, 1998: 92-100. |
[53] |
TRAN H Q, HA C. Reducing the burden of data collection in a fingerprinting-based VLP system using a hybrid of improved co-training semi-supervised regression and adaptive boosting algorithms[J]. Optics Communications, 2021, 488: 126857.
DOI URL |
[54] |
DÍAZ G, PERALTA B, CARO L A, et al. Co-training for visual object recognition based on self-supervised models using a cross-entropy regularization[J]. Entropy, 2021, 23(4): 423.
DOI URL |
[55] | CHEN D D, WANG W, GAO W, et al. Tri-net for semi-supervised deep learning[C]// Proceedings of the 27th Interna-tional Joint Conference on Artificial Intelligence, Stockholm, Jul 13-19, 2018: 2014-2020. |
[56] | RUDER S, PLANK B. Strong baselines for neural semi-supervised learning under domain shift[C]// Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, Melbourne, Jul 15-20, 2018. Stroudsburg: ACL, 2018: 76-85. |
[57] | CLARK K, LUONG M T, MANNING C D, et al. Semi-supervised sequence modeling with cross-view training[C]// Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Oct 31-Nov 4, 2018. Stroudsburg: ACL, 2018: 1914-1925. |
[58] | CLARK K, LUONG T, LE Q V. Cross-view training for semi-supervised learning[C]// Proceedings of the 2018 Conference Acceptance Decision, Vancouver, Apr 30-May 3, 2018: 1-14. |
[59] | YANG L, LIU H B, ZHOU J H, et al. Pluggable weakly-supervised cross-view learning for accurate vehicle reidenti-fication[J]. arXiv:2103.05376, 2021. |
[60] | 周志华. 机器学习[M]. 北京: 清华大学出版社, 2016. |
ZHOU Z H. Machine learning[M]. Beijing: Tsinghua Univer-sity Press, 2016. | |
[61] |
YI Y, CHEN Y Q, WANG J Z, et al. Joint feature represen-tation and classification via adaptive graph semi-supervised nonnegative matrix factorization[J]. Signal Processing: Image Communication, 2020, 89: 115984.
DOI URL |
[62] | OUALI Y, HUDELOT C, TAMI M. An overview of deep semi-supervised learning[J]. arXiv:2006.05278, 2020. |
[63] |
KUMAR S, SINGHLA L, JINDAL K, et al. IM-ELPR: inf-luence maximization in social networks using label propa-gation based community structure[J]. Applied Intelligence, 2021, 51(11): 7647-7665.
DOI URL |
[64] | XIE T, WANG B, KUO C C J. GraphHop: an enhanced label propagation method for node classification[J]. arXiv:2101.02326, 2021. |
[65] | 王俊斌. 基于标签传播的半监督聚类算法研究[D]. 太原: 山西大学, 2020. |
WANG J B. Research on semi-supervised clustering algorithm based on label propagation[D]. Taiyuan: Shanxi University, 2020. | |
[66] | KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Image-Net classification with deep convolutional neural networks[C]// Advances in Neural Information Processing Systems 25, Lake Tahoe, Dec 3-6, 2012. Red Hook: Curran Associates, 2012: 1106-1114. |
[67] | KRIZHEVSKY A, HINTON G. Learning multiple layers of features from tiny images[J]. Handbook of Systemic Auto-immune Diseases, 2009, 1(4): 1-60. |
[68] | SINGH A, NOWAK R D, ZHU X J. Unlabeled data: now it helps, now it doesn’t[C]// Proceedings of the 22nd Annual Conference on Neural Information Processing Systems, Vancouver, Dec 8-11, 2008. Red Hook: Curran Associates, 2008: 1513-1520. |
[69] |
YANG T, PRIEBE C E. The effect of model misspecification on semi-supervised classification[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(10): 2093-2103.
DOI URL |
[70] |
LU Z W, WANG L W. Noise-robust semi-supervised learning via fast sparse coding[J]. Pattern Recognition, 2015, 48(2): 605-612.
DOI URL |
[71] | HAN B, YAO Q M, YU X R, et al. Co-teaching: robust trai-ning of deep neural networks with extremely noisy labels[C]// Advances in Neural Information Processing Systems 31, Mon-tréal, Dec 3-8, 2018: 8536-8546. |
[1] | AN Fengping, LI Xiaowei, CAO Xiang. Medical Image Classification Algorithm Based on Weight Initialization-Sliding Window CNN [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(8): 1885-1897. |
[2] | ZENG Fanzhi, XU Luqian, ZHOU Yan, ZHOU Yuexia, LIAO Junwei. Review of Knowledge Tracing Model for Intelligent Education [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(8): 1742-1763. |
[3] | LIU Yi, LI Mengmeng, ZHENG Qibin, QIN Wei, REN Xiaoguang. Survey on Video Object Tracking Algorithms [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(7): 1504-1515. |
[4] | ZHAO Xiaoming, YANG Yijiao, ZHANG Shiqing. Survey of Deep Learning Based Multimodal Emotion Recognition [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(7): 1479-1503. |
[5] | XIA Hongbin, XIAO Yifei, LIU Yuan. Long Text Generation Adversarial Network Model with Self-Attention Mechanism [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(7): 1603-1610. |
[6] | SUN Fangwei, LI Chengyang, XIE Yongqiang, LI Zhongbo, YANG Caidong, QI Jin. Review of Deep Learning Applied to Occluded Object Detection [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(6): 1243-1259. |
[7] | CHENG Weiyue, ZHANG Xueqin, LIN Kezheng, LI Ao. Deep Convolutional Neural Network Algorithm Fusing Global and Local Features [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(5): 1146-1154. |
[8] | ZHONG Mengyuan, JIANG Lin. Review of Super-Resolution Image Reconstruction Algorithms [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(5): 972-990. |
[9] | PEI Lishen, ZHAO Xuezhuan. Survey of Collective Activity Recognition Based on Deep Learning [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(4): 775-790. |
[10] | XU Jia, WEI Tingting, YU Ge, HUANG Xinyue, LYU Pin. Review of Question Difficulty Evaluation Approaches [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(4): 734-759. |
[11] | ZHU Weijie, CHEN Ying. Micro-expression Recognition Convolutional Network for Dual-stream Temporal-Domain Information Interaction [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(4): 950-958. |
[12] | JIANG Yi, XU Jiajie, LIU Xu, ZHU Junwu. Research on Edge-Guided Image Repair Algorithm [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(3): 669-682. |
[13] | ZHANG Quangui, HU Jiayan, WANG Li. One Class Collaborative Filtering Recommendation Algorithm Coupled with User Common Characteristics [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(3): 637-648. |
[14] | WU Kaijun, HUANG Tao, WANG Dicong, BAI Chenshuai, TAO Xiaomiao. Research Progress of Video Anomaly Detection Technology [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(3): 529-540. |
[15] | LIU Ying, GUO Yingying, FANG Jie, FAN Jiulun, HAO Yu, LIU Jiming. Survey of Research on Deep Learning Image-Text Cross-Modal Retrieval [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(3): 489-511. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/