Journal of Frontiers of Computer Science and Technology ›› 2024, Vol. 18 ›› Issue (6): 1613-1626.DOI: 10.3778/j.issn.1673-9418.2302029
• Artificial Intelligence·Pattern Recognition • Previous Articles Next Articles
QIU Yunfei, XING Haoran, YU Zhilong, ZHANG Wenwen
Online:
2024-06-01
Published:
2024-05-31
邱云飞,邢浩然,于智龙,张文文
QIU Yunfei, XING Haoran, YU Zhilong, ZHANG Wenwen. Nested Named Entity Recognition Combining Multi-modal and Multi-span Features[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(6): 1613-1626.
邱云飞, 邢浩然, 于智龙, 张文文. 联合多模态与多跨度特征的嵌套命名实体识别[J]. 计算机科学与探索, 2024, 18(6): 1613-1626.
[1] ROJAS M, BRAVO-MARQUEZ F, DUNSTAN J. Simple yet powerful: an overlooked architecture for nested named entity recognition[C]//Proceedings of the 29th International Conference on Computational Linguistics, Gyeongju, Oct 12-17, 2022: 2108-2117. [2] SHEN Y, MA X, TAN Z, et al. Locate and label: a two- stage identifier for nested named entity recognition[C]// Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, Aug 1-6, 2021.Stroudsburg: ACL, 2021: 2782-2794. [3] WU S, SONG X, FENG Z. MECT: multi-metadata embed- ding based cross-transformer for Chinese named entity recognition[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, Aug 1-6, 2021. Stroudsburg: ACL, 2021: 1529-1539. [4] LUO Y, ZHAO H. Bipartite flat-graph network for nested named entity recognition[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Jul 6-8, 2020. Stroudsburg: ACL, 2020: 6408-6418. [5] JU M, MIWA M, ANANIADOU S. A neural layered model for nested named entity recognition[C]//Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: ACL, 2018: 1446-1459. [6] HUANG P, ZHAO X, HU M, et al. Extract-Select: a span selection framework for nested named entity recognition with generative adversarial training[C]//Findings of the Association for Computational Linguistics: ACL 2022. Stroudsburg: ACL, 2022: 85-96. [7] YANG S, TU K. Bottom-up constituency parsing and nested named entity recognition with pointer networks[C]//Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2022: 2403-2416. [8] YUAN Z, TAN C, HUANG S, et al. Fusing heterogeneous factors with triaffine mechanism for nested named entity recognition[C]//Findings of the Association for Computational Linguistics: ACL 2022. Stroudsburg: ACL, 2022: 3174-3186. [9] GU Y, QU X, WANG Z, et al. Delving deep into regularity: a simple but effective method for Chinese named entity recog-nition[C]//Findings of the Association for Computational Lin-guistics: ACL 2022. Stroudsburg: ACL, 2022: 1863-1873. [10] WU S, SHEN Y, TAN Z, et al. Propose-and-Refine: a two-stage set prediction network for nested named entity recognition[C]//Proceedings of the 31st International Joint Conference on Artificial Intelligence, Vienna, Jul 23-29, 2022: 4418-4424. [11] LIU W, FU X, ZHANG Y, et al. Lexicon enhanced Chinese sequence labeling using BERT adapter[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2021: 5847-5858. [12] DEVLIN J, CHANG M W, LEE K, et al. BERT: pre- training of deep bidirectional transformers for language understanding[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Minneapolis, Jun 2-7, 2019. Stroudsburg: ACL, 2019: 4171-4186. [13] LI X, FENG J, MENG Y, et al. A unified MRC framework for named entity recognition[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2020: 5849-5859. [14] XUAN Z, BAO R, JIANG S. FGN: fusion glyph network for Chinese named entity recognition[C]//Proceedings of the 5th China Conference on Knowledge Graph and Semantic Computing, Aug 24-27, 2021: 28-40. [15] LI X N, YAN H, QIU X P, et al. FLAT: Chinese NER using flat-lattice transformer[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Washington, Jul 5-10, 2020. Stroudsburg: ACL, 2020: 6836-6842. [16] SUN Z, LI X, SUN X, et al. ChineseBERT: Chinese pretrai- ning enhanced by glyph and Pinyin information[C]//Proce- edings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2021: 2065-2075. [17] YANG Z, MA J, CHEN H, et al. HiTRANS: a hierarchical transformer network for nested named entity recognition[C]//Findings of the Association for Computational Linguistics: Empirical Methods in Natural Language Processing 2021. Stroudsburg: ACL, 2021: 124-132. [18] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 99: 2999-3007. [19] HONGYING Z, WENXIN L, KUNLI Z, et al. Building a pediatric medical corpus: word segmentation and named entity annotation[J]. Chinese Lexical Semantics, 2021, 21: 652-664. [20] PENG N, DREDZE M. Named entity recognition for Chinese social media with jointly trained embeddings[C]//Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2015: 548-554. [21] WEISCHEDEL R, PRADHAN S, RAMSHAW L, et al. Ontonotes release 4.0[EB/OL]. [2022-11-25]. https://doi.org/10.35111/gfjf-7r50. [22] WALKER C, STRASSEL S, MEDERO J, et al. ACE 2005 multilingual training corpus[J]. Progress of Theoretical Physics Supplement, Philadelphia, 2006, 110: 261-276. [23] KIM J D, OHTA T, TATEISI Y, et al. GENIA corpus—a semantically annotated corpus for bio-textmining[J]. Bio-informatics, 2003, 19: 180-182. [24] SPRINGER, CHAM, WANG X, et al. CHEMNER: fine- grained chemistry named entity recognition with ontology-guided distant supervision[C]//Proceedings of the 2021 Con-ference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2021: 5227-5240. [25] ZHANG Y, YANG J. Chinese NER using lattice LSTM [C]//Proceedings of the 56th Annual Meeting of the Ass- ociation for Computational Linguistics, Melbourne, Jul 15-20, 2018. Stroudsburg: ACL, 2018: 1554-1564. [26] YU J, BOHNET B, POESIO M. Named entity recognition as dependency parsing[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2020: 6470-6476. [27] PENNINGTON J, SOCHER R, MANNING C D. GloVe: global vectors for word representation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2014: 1532-1543. [28] CHIU B, CRICHTON G, KORHONEN A, et al. How to train good word embeddings for biomedical NLP[C]//Proceedings of the 15th Workshop on Biomedical Natural Language Processing. Stroudsburg: ACL, 2016: 166-174. [29] LEE J, YOON W, KIM S, et al. BioBERT: a pre-trained biomedical language representation model for biomedical text mining[J]. Bioinformatics, 2020, 36(4): 1234-1240. [30] SONG Y, SHI S, LI J, et al. Directional skip-gram: expli- citly distinguishing left and right context for word embed-dings[C]//Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: ACL, 2018: 175-180. |
[1] | XU Zhihong, HAO Xuemei, WANG Liqin, DONG Yongfeng, WANG Xu. Research on Knowledge Graph Entity Prediction Method of Multi-modal Curriculum Learning [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(6): 1590-1599. |
[2] | WEN Minwei, MEI Hongyan, YUAN Fengyuan, ZHANG Xiaoyu, ZHANG Xing. Survey of Multi-task Recommendation Algorithms [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(2): 363-377. |
[3] | GU Junhua, LI Ningning, WANG Xinxin, ZHANG Suqi. Integrating Behavioral Dependencies into Multi-task Learning for Personalized Recommendations [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(1): 231-243. |
[4] | CAO Yingli, DENG Zhaohong, HU Shudong, WANG Shitong. Classification of Alzheimer's Disease Integrating Individual Feature and Fusion Feature [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(7): 1658-1668. |
[5] | LIN Jian, WU Yun, CHEN Yukang. Multi-task Recommendation Model of Dual Perception Gated Interaction [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(6): 1417-1426. |
[6] | ZHANG Qiuju, LYU Qing. Research Progresses of Multi-modal Intelligent Robotic Manipulation [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(4): 792-809. |
[7] | GAO Yang, LIU Yuan. Recommendation Algorithm Combining Social Relationship and Knowledge Graph [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(1): 238-250. |
[8] | LIU Ying, WANG Zhe, FANG Jie, ZHU Tingge, LI Linna, LIU Jiming. Multi-modal Public Opinion Analysis Based on Image and Text Fusion [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(6): 1260-1278. |
[9] | LIU Jiming, ZHANG Peixiang, LIU Ying, ZHANG Weidong, FANG Jie. Summary of Multi-modal Sentiment Analysis Technology [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(7): 1165-1182. |
[10] | GAO Yang, LIU Yuan. Recommendation Algorithm Combining Knowledge Graph and Short-Term Preferences [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(6): 1133-1144. |
[11] | LI Yanjuan, ZANG Mingzhe, LIU Xiaoyan, LIU Yang, GUO Maozu. Distant Supervision Relation Extraction Combining Attention Mechanism and Ontology [J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(9): 1554-1562. |
[12] | YANG Chen, SONG Xiaoning, SONG Wei. SentiBERT: Pre-training Language Model Combining Sentiment Information [J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(9): 1563-1570. |
[13] | PENG Yao, ZU Chen, ZHANG Daoqiang. Hypergraph Based Multi-Modal Feature Selection and Its Application [J]. Journal of Frontiers of Computer Science and Technology, 2018, 12(1): 112-119. |
[14] | SHI Yingzhong, WANG Juqin, XU Min, WANG Shitong. Fast Algorithm for Regularized Multi-Task Learning [J]. Journal of Frontiers of Computer Science and Technology, 2017, 11(6): 988-997. |
[15] | XUE Lijuan, XI Menglong, WANG Mengjie, WANG Haofen, RUAN Tong. Entity Relation Extraction Based on Rule Inference Engine [J]. Journal of Frontiers of Computer Science and Technology, 2016, 10(9): 1310-1319. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 235
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 200
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/