Journal of Frontiers of Computer Science and Technology ›› 2024, Vol. 18 ›› Issue (2): 363-377.DOI: 10.3778/j.issn.1673-9418.2303014
• Frontiers·Surveys • Previous Articles Next Articles
WEN Minwei, MEI Hongyan, YUAN Fengyuan, ZHANG Xiaoyu, ZHANG Xing
Online:
2024-02-01
Published:
2024-02-01
温民伟,梅红岩,袁凤源,张晓宇,张兴
CLC Number:
WEN Minwei, MEI Hongyan, YUAN Fengyuan, ZHANG Xiaoyu, ZHANG Xing. Survey of Multi-task Recommendation Algorithms[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(2): 363-377.
温民伟, 梅红岩, 袁凤源, 张晓宇, 张兴. 多任务推荐算法研究综述[J]. 计算机科学与探索, 2024, 18(2): 363-377.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2303014
[1] DAS D, SAHOO L, DATTA S. A survey on recommendation system[J]. International Journal of Computer Applications, 2017, 160(7): 6-10. [2] NUNES M, GERDING E, MCGROARTY F, et al. A comparison of multitask and single task learning with artificial neural networks for yield curve forecasting[J]. Expert Systems with Applications, 2019, 119: 362-375. [3] NING X, KARYPIS G. Multi-task learning for recommender system[C]//Proceedings of the 2nd Asian Conference on Machine Learning, Japan, Nov 8-10, 2010: 269-284. [4] VILALTA R, CARRIER C G, BRAZDIL P, et al. Inductive transfer[J]. Encyclopedia of Machine Learning, 2017, 1(1): 666-671. [5] CARUANA R. Multitask learning[J]. Machine Learning, 1997, 28(1): 41-75. [6] RUDER S. An overview of multi-task learning in deep neural networks[J]. arXiv:1706.05098, 2017. [7] MA X, ZHAO L, HUANG G, et al. Entire space multi-task model: an effective approach for estimating post-click conversion rate[C]//Proceedings of the 41st International ACM SIGIR Conference on Research & Development in Information Retrieval. New York: ACM, 2018: 1137-1140. [8] MA J, ZHAO Z, YI X, et al. Modeling task relationships in multi-task learning with multi-gate mixture-of-experts[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2018: 1930-1939. [9] TANG H, LIU J, ZHAO M, et al. Progressive layered extraction (PLE): a novel multi-task learning (MTL) model for personalized recommendations[C]//Proceedings of the 14th ACM Conference on Recommender Systems, New York, Sep 10, 2020. New York: ACM, 2020: 269-278. [10] HUANG Z, RAO M, RAJU A, et al. MTL-SLT: multi-task learning for spoken language tasks[C]//Proceedings of the 4th Workshop on NLP for Conversational AI. Stroudsburg: ACL, 2022: 120-130. [11] SAMPATH V, MAURTUA I, MARTíN J J A, et al. Attention guided multi-task learning for surface defect identification[J]. IEEE Transactions on Industrial Informatics, 2023, 19(9): 9713-9721. [12] HU Y, CHEN C, LI R, et al. Gradient remedy for multi-task learning in end-to-end noise-robust speech recognition[J]. arXiv:2302.11362, 2023. [13] SONG Y, WANG Y, WANG X, et al. Multi-task adaptive pooling enabled synergetic learning of RNA modification across tissue, type and species from low-resolution epitranscriptomes[J]. Briefings in Bioinformatics, 2023, 24. [14] WEN H, ZHANG J, WANG Y, et al. Entire space multi-task modeling via post-click behavior decomposition for conversion rate prediction[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020: 2377-2386. [15] WANG Y, ZHANG J, DA Q, et al. Delayed feedback modeling for the entire space conversion rate prediction[J]. arXiv: 2011.11826, 2020. [16] ZHANG W, BAO W, LIU X Y, et al. Large-scale causal approaches to debiasing post-click conversion rate estimation with multi-task learning[C]//Proceedings of the Web Conference 2020. New York: ACM, 2020: 2775-2781. [17] WANG H, CHANG T W, LIU T, et al. ESCM2: entire space counterfactual multi-task model for post-click conversion rate estimation[J]. arXiv:2204.05125, 2022. [18] ZHU F, ZHONG M, YANG X, et al. DCMT: a direct entire-space causal multi-task framework for post-click conversion estimation[J]. arXiv:2302.06141, 2023. [19] JIN J, CHEN X, ZHANG W, et al. Multi-scale user behavior network for entire space multi-task learning[C]//Proceedings of the 31st ACM International Conference on Information and Knowledge Management, Atlanta, Oct 17, 2022. New York: ACM, 2022: 874-883. [20] XI D, CHEN Z, YAN P, et al. Modeling the sequential dependence among audience multi-step conversions with multi-task learning in targeted display advertising[C]//Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2021: 3745-3755. [21] ZHANG Y, LI X, YU Y, et al. Entire cost enhanced multi-task model for online-to-offline conversion rate prediction[C]//Proceedings of the 2022 Workshop on Deep Learning for Search and Recommendation, co-located with the 31st ACM International Conference on Information and Knowledge Management, Atlanta, Oct 17-21, 2022. [22] BANSAL T, BELANGER D, MCCALLUM A. Ask the GRU: multi-task learning for deep text recommendations[C]//Proceedings of the 10th ACM Conference on Recommender Systems, Boston, Sep 7, 2016. New York: ACM, 2016: 107-114. [23] YANG E, PAN J, WANG X, et al. AdaTask: a task-aware adaptive learning rate approach to multi-task learning[J]. arXiv:2211.15055, 2022. [24] LIU J, LI X, AN B, et al. Multi-faceted hierarchical multi-task learning for recommender systems[C]//Proceedings of the 31st ACM International Conference on Information and Knowledge Management, Atlanta, Oct 17, 2022. New York: ACM, 2022: 3332-3341. [25] LIN Z, YANG X, LIU S, et al. Personalized inter-task contrastive learning for CTR&CVR joint estimation[J]. arXiv: 2208.13442, 2022. [26] MISRA I, SHRIVASTAVA A, GUPTA A, et al. Cross-stitch networks for multi-task learning[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2016: 3994-4003. [27] RUDER S, BINGEL J, AUGENSTEIN I, et al. Sluice networks: learning what to share between loosely related tasks[J]. arXiv:1705.08142, 2017. [28] CHEN Z, WANG X, XIE X, et al. Co-attentive multi-task learning for explainable recommendation[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence, Macao, China, Aug 11-19, 2019: 2137-2143. [29] XIN S, ESTER M, BU J, et al. Multi-task based sales predictions for online promotions[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management. New York: ACM, 2019: 2823-2831. [30] CHEN Y, YU J, ZHAO Y, et al. Task??s choice: pruning-based feature sharing (PBFS) for multi-task learning[J]. Entropy, 2022, 24(3): 432. [31] SHAZEER N, MIRHOSEINI A, MAZIARZ K, et al. Outrageously large neural networks: the sparsely-gated mixture-of-experts layer[J]. arXiv:1701.06538, 2017. [32] ZHAO Z, HONG L, WEI L, et al. Recommending what video to watch next: a multitask ranking system[C]//Proceedings of the 13th ACM Conference on Recommender Systems, Copenhagen, Sep 10, 2019. New York: ACM, 2019: 43-51. [33] MA J, ZHAO Z, CHEN J, et al. SNR: sub-network routing for flexible parameter sharing in multi-task learning[C]//Proceedings of the 2019 AAAI Conference on Artificial Intelligence, Honolulu, Jan 27-Feb 1, 2019. Menlo Park: AAAI, 2019: 216-223. [34] XU Z, ZHAO M, LIU L, et al. Mixture of virtual-kernel experts for multi-objective user profile modeling[C]//Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Washington, Aug 14, 2022. New York: ACM, 2022: 4257-4267. [35] WU X, MAGNANI A, CHAIDAROON S, et al. A multi-task learning framework for product ranking with BERT[C]//Proceedings of the ACM Web Conference 2022, Lyon, Apr 25, 2022. New York: ACM, 2022: 493-501. [36] QIN Z, CHENG Y, ZHAO Z, et al. Multitask mixture of sequential experts for user activity streams[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Aug 20, 2020. New York: ACM, 2020: 3083-3091. [37] WU H. MNCM: multi-level network cascades model for multi-task learning[C]//Proceedings of the 31st ACM International Conference on Information and Knowledge Management, Atlanta, Oct 17, 2022. New York: ACM, 2022: 4565-4569. [38] XIN S, JIAO Y, LONG C, et al. Prototype feature extraction for multi-task learning[C]//Proceedings of the ACM Web Conference 2022, Lyon, Apr 25, 2022. New York: ACM, 2022: 2472-2481. [39] TAO X, HA M, GUO X, et al. Task aware feature extraction framework for sequential dependence multi-task learning[J]. arXiv:2301.02494, 2023. [40] LI D, ZHANG Z, YUAN S, et al. AdaTT: adaptive task-to-task fusion network for multitask learning in recommendations[J]. arXiv:2304.04959, 2023. [41] SUN T, SHAO Y, LI X, et al. Learning sparse sharing architectures for multiple tasks[C]//Proceedings of the 2020 AAAI Conference on Artificial Intelligence. Menlo Park: AAAI, 2020: 8936-8943. [42] XIAO X, CHEN H, LIU Y, et al. LT4REC: a lottery ticket hypothesis based multi-task practice for video recommendation system[J]. arXiv:2008.09872, 2020. [43] DING K, DONG X, HE Y, et al. MSSM: a multiple-level sparse sharing model for efficient multi-task learning[C]//Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, Canada, Jul 11, 2021. New York: ACM, 2021: 2237-2241. [44] CHEN X, GU X, FU L. Boosting share routing for multi-task learning[C]//Proceedings of the Companion of the Web Conference 2021, Ljubljana, Jun 3, 2021: 372-379. [45] BAI T, XIAO Y, WU B, et al. A contrastive sharing model for multi-task recommendation[C]//Proceedings of the ACM Web Conference 2022. New York: ACM, 2022: 3239-3247. [46] LIM N, HOOI B, NG S K, et al. Hierarchical multi-task graph recurrent network for next POI recommendation[C]//Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, Madrid, Jul 7, 2022. New York: ACM, 2022: 1133-1143. [47] WEN H, ZHANG J, LV F, et al. Hierarchically modeling micro and macro behaviors via multi-task learning for conversion rate prediction[C]//Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2021: 2187-2191. [48] VANSCHOREN J. Meta-learning[M]//Automated Machine Learning. Cham: Springer, 2019: 35-61. [49] YANG K, LI X, LI J, et al. Meta-learning for recommendation system with the multi-tasking learning setting[C]//Proceedings of the 2019 IEEE 4th Advanced Information Technology, Electronic and Automation Control Conference, Chengdu, Dec 20-22, 2019. Piscataway: IEEE, 2020: 735-740. [50] HE Y, FENG X, CHENG C, et al. MetaBalance: improving multi-task recommendations via adapting gradient magnitudes of auxiliary tasks[C]//Proceedings of the ACM Web Conference 2022. New York: ACM, 2022: 2205-2215. [51] LEE S, SON Y. Multitask learning with single gradient step update for task balancing[J]. Neurocomputing, 2022, 467: 442-453. [52] JAVALOY A, VALERA I. Rotograd: gradient homogenization in multitask learning[J]. arXiv:2103.02631, 2021. [53] HE R, MCAULEY J. Ups and downs: modeling the visual evolution of fashion trends with one-class collaborative filtering[C]//Proceedings of the 25th International Conference on World Wide Web, Montreal, Apr 11-15, 2016: 507-517. [54] HARPER F M, KONSTAN J A. The MovieLens datasets: history and context[J]. ACM Transactions on Interactive Intelligent Systems, 2015, 5(4): 1-19. [55] CAO Q, SHEN H, CEN K, et al. Deephawkes: bridging the gap between prediction and understanding of information cascades[C]//Proceedings of the 2017 ACM Conference on Information and Knowledge Management. New York: ACM, 2017: 1149-1158. [56] ORAMAS S, OSTUNI V C, NOIA T D, et al. Sound and music recommendation with knowledge graphs[J]. ACM Transactions on Intelligent Systems and Technology, 2016, 8(2): 1-21. [57] SCHEDL M. The LFM-1b dataset for music retrieval and recommendation[C]//Proceedings of the 2016 ACM International Conference on Multimedia Retrieval, New York, Jun 6, 2016. New York: ACM, 2016: 103-110. [58] KANG W C, MCAULEY J. Self-attentive sequential recommendation[C]//Proceedings of the 2018 IEEE International Conference on Data Mining. Piscataway: IEEE, 2018: 197-206. [59] WANG X, HE X, WANG M, et al. Neural graph collaborative filtering[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, Paris, Jul 18, 2019. New York: ACM, 2019: 165-174. [60] FAWCETT T. An introduction to ROC analysis[J]. Pattern Recognition Letters, 2006, 27(8): 861-874. [61] ZHU H, JIN J, TAN C, et al. Optimized cost per click in taobao display advertising[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2017: 2191-2200. [62] ZHANG Y, CHEN X. Explainable recommendation: a survey and new perspectives[J]. Foundations and Trends? in Information Retrieval, 2020, 14(1): 1-101. [63] LU Y, FANG Y, SHI C. Meta-learning on heterogeneous information networks for cold-start recommendation[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2020: 1563-1573. [64] LI H, WANG Y, LYU Z, et al. Multi-task learning for recommendation over heterogeneous information network[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(2): 789-802. [65] LI P, WANG Z, REN Z, et al. Neural rating regression with abstractive tips generation for recommendation[C]//Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval, Tokyo, Aug 7, 2017. New York: ACM, 2017: 345-354. [66] VITHAYATHIL VARGHESE N, MAHMOUD Q H. A survey of multi-task deep reinforcement learning[J]. Electronics, 2020, 9(9): 1363. [67] ZHANG Q, LIU J, DAI Y, et al. Multi-task fusion via reinforcement learning for long-term user satisfaction in recommender systems[C]//Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Washington, Aug 14, 2022. New York: ACM, 2022: 4510-4520. [68] ZHANG H, ZHAO P, XIAN X, et al. Click is not equal to purchase: multi-task reinforcement learning for multi-behavior recommendation[C]//Proceedings of the 2022 International Conference on Web Information Systems Engineering. Cham: Springer, 2022: 443-459. [69] LIU X, LI L, HSIEH P C, et al. Developing multi-task recommendations with long-term rewards via policy distilled reinforcement learning[J]. arXiv:2001.09595, 2020. |
[1] | GU Junhua, LI Ningning, WANG Xinxin, ZHANG Suqi. Integrating Behavioral Dependencies into Multi-task Learning for Personalized Recommendations [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(1): 231-243. |
[2] | CUI Huanqing, SONG Weiqing, YANG Junzhu. Knowledge Ripple Graph Convolutional Network for Recommendation [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(9): 2209-2218. |
[3] | FENG Han, YI Huawei, LI Xiaohui, LI Rui. Review of Privacy-Preserving Research in Recommendation Systems [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(8): 1814-1832. |
[4] | ZHANG Chengdong, WANG Shaoqing, LIU Yufang, ZHENG Shun, SUN Fuzhen. Method of Heterogeneous Graph Representation Learning Using Novel Meta-Path [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(7): 1680-1689. |
[5] | ZHAO Yehui, LIU Lin, WANG Hailong, HAN Haiyan, PEI Dongmei. Survey of Knowledge Graph Recommendation System Research [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(4): 771-791. |
[6] | GAO Yang, LIU Yuan. Recommendation Algorithm Combining Social Relationship and Knowledge Graph [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(1): 238-250. |
[7] | CHEN Jiangmei, ZHANG Wende. Review of Point of Interest Recommendation Systems in Location-Based Social Networks [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(7): 1462-1478. |
[8] | WU Sen, DONG Yaxian, WEI Guiying, GAO Xiaonan. Research on User Similarity Calculation of Collaborative Filtering for Sparse Data [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(5): 1043-1052. |
[9] | WU Jing, XIE Hui, JIANG Huowen. Survey of Graph Neural Network in Recommendation System [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(10): 2249-2263. |
[10] | WU Jiawei, SUN Yanchun. Recommendation System for Medical Consultation Integrating Knowledge Graph and Deep Learning Methods [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(8): 1432-1440. |
[11] | GAO Yang, LIU Yuan. Recommendation Algorithm Combining Knowledge Graph and Short-Term Preferences [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(6): 1133-1144. |
[12] | XING Changzheng, GUO Yalan, ZHANG Quangui, ZHAO Hongbao. Recommendation Method Integrating Review Text Hierarchical Attention with Time Information [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(11): 2222-2232. |
[13] | YANG Chen, SONG Xiaoning, SONG Wei. SentiBERT: Pre-training Language Model Combining Sentiment Information [J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(9): 1563-1570. |
[14] | LI Guangli, HUA Jin, YUAN Tian, ZHU Tao, WU Renzhong, JI Donghong, ZHANG Hongbin. Recommendation System Based on Users' Preference Mining Generative Adversarial Networks [J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(5): 803-814. |
[15] | WANG Shaoqing, LI Xinxin, SUN Fuzhen, FANG Chun. Survey of Research on Personalized News Recommendation Techniques [J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(1): 18-29. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/