Journal of Frontiers of Computer Science and Technology ›› 2023, Vol. 17 ›› Issue (4): 771-791.DOI: 10.3778/j.issn.1673-9418.2205052
• Frontiers·Surveys • Previous Articles Next Articles
ZHAO Yehui, LIU Lin, WANG Hailong, HAN Haiyan,PEI Dongmei
Online:
2023-04-01
Published:
2023-04-01
赵晔辉,柳林,王海龙,韩海燕,裴冬梅
ZHAO Yehui, LIU Lin, WANG Hailong, HAN Haiyan, PEI Dongmei. Survey of Knowledge Graph Recommendation System Research[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(4): 771-791.
赵晔辉, 柳林, 王海龙, 韩海燕, 裴冬梅. 知识图谱推荐系统研究综述[J]. 计算机科学与探索, 2023, 17(4): 771-791.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2205052
[1] PAZZANI M J, BILLSUS D. Content-based recommendation systems[M]//The Adaptive Web. Berlin, Heidelberg: Springer, 2007: 325-341. [2] SU X, KHOSHGOFTAAR T M. A survey of collaborative filtering techniques[J]. Advances in Artificial Intelligence, 2009. DOI: 10.1155/2009/421425. [3] ADOMAVICIUS G, TUZHILIN A. Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions[J]. IEEE Transactions on Know-ledge and Data Engineering, 2005, 17(6): 734-749. [4] SUN Z, GUO Q, YANG J, et al. Research commentary on recommendations with side information: a survey and research directions[J]. Electronic Commerce Research and Applications, 2019, 37: 100879. [5] 程章桃, 钟婷, 张晟铭, 等. 基于图学习的推荐系统研究综述[J]. 计算机科学, 2022, 49(9): 1-13. YAO Z T, ZHONG T, ZHANG S M, et al. Survey of recommender system based on graph learning[J]. Computer Science, 2022, 49(9): 41-47. [6] 常亮, 张伟涛, 古天龙, 等. 知识图谱的推荐系统综述[J]. 智能系统学报, 2019, 14(2): 207-216. CHANG L, ZHANG W T, GU T L, et al. Review of recommendation systems based on knowledge graph[J]. CAAI Transactions on Intelligent Systems, 2019, 14(2): 207-216. [7] 秦川, 祝恒书, 庄福振, 等. 基于知识图谱的推荐系统研究综述[J]. 中国科学: 信息科学, 2020, 50(7): 937-956. QIN C, ZHU H S, ZHUANG F Z, et al. A survey on knowledge graph-based recommender systems[J]. Scientia Sinica: Informationis, 2020, 50(7): 937-956. [8] GUO Q, ZHUANG F Z, QIN C, et al. A survey on knowledge graph-based recommender systems[J]. IEEE Transactions on Knowledge and Data Engineering, 2020, 34(8): 3549-3568. [9] 朱冬亮, 文奕, 万子琛. 基于知识图谱的推荐系统研究综述[J]. 数据分析与知识发现, 2021, 5(12): 1-13. ZHU D L, WEN Y, WAN Z C. Review of recommendation systems based on knowledge graph[J]. Data Analysis and Knowledge Discovery, 2021, 5(12): 1-13. [10] 吴正洋, 汤庸, 刘海. 个性化学习推荐研究综述[J]. 计算机科学与探索, 2022, 16(1): 21-40. WU Z Y, TANG Y, LIU H. Survey of personalized learning recommendation[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(1): 21-40. [11] 李想, 杨兴耀, 于炯, 等. 基于知识图谱卷积网络的双端推荐算法[J]. 计算机科学与探索, 2022, 16(1): 176-184. LI X, YANG X Y, YU T, et al. Double end knowledge graph convolutional networks for recommender systems[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(1): 176-184. [12] 阎红灿, 王子茹, 李伟芳, 等. 伴随时间的模糊聚类协同过滤推荐算法[J]. 计算机工程与科学, 2021, 43(11): 2084-2090. YAN H C, WANG Z Y, LI W F, et al. Time-based fuzzy cluster collaborative filtering recommendation algorithm[J]. Computer Engineering & Science, 2021, 43(11): 2084-2090. [13] 吴静, 谢辉, 姜火文. 图神经网络推荐系统综述[J]. 计算机科学与探索, 2022, 16(10): 2249-2263. WU J, XIE H, JIANG H W. Survey of graph neural network in recommendation system[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(10): 2249-2263. [14] CHO K, VAN MERRIENBOER B, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[J]. arXiv:1406.1078, 2014. [15] SHIN H C, ROTH H R, GAO M, et al. Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning[J]. IEEE Transactions on Medical Imaging, 2016, 35(5): 1285-1298. [16] SCARSELLI F, GORI M, TSOI A C, et al. The graph neural network model[J]. IEEE Transactions on Neural Networks, 2008, 20(1): 61-80. [17] WANG X, HE X, WANG M, et al. Neural graph collaborative filtering[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, Paris, Jul 21-25, 2019. New York: ACM, 2019: 165-174. [18] 李世宝, 张益维, 刘建航, 等. 基于知识图谱共同邻居排序采样的推荐模型[J]. 电子与信息学报, 2021, 43(12): 3522-3529. LI S B, ZHANG Y W, LIU J H, et al. Recommendation model based on public neighbor sorting and sampling of knowledge graph[J]. Journal of Electronics & Information Technology, 2021, 43(12): 3522-3529. [19] SUN J, ZHANG Y, GUO W, et al. Neighbor interaction aware graph convolution networks for recommendation[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, Jul 25-30, 2020. New York: ACM, 2020: 1289-1298. [20] VELI?KOVI? P, CUCURULL G, CASANOVA A, et al. Graph attention networks[J]. arXiv:1710.10903, 2017. [21] 王建芳, 文茜琳, 杨许, 等. 基于偏差的图注意力神经网络推荐算法[J]. 控制与决策, 2022, 37(7): 1705-1712. WANG J F, WEN Q L, YANG X, et al. A bias-based graph attention neural network recommender algorithm[J]. Control and Decision, 2022, 37(7): 1705-1712. [22] 苏静, 许天琪, 张贤坤, 等. 基于图卷积与外积的协同过滤推荐模型[J]. 计算机应用研究, 2021, 38(10): 3044-3048. SU J, XU T Q, ZHANG X K, et al. Collaborative filtering recommendation model based on graph convolution and cross product[J]. Application Research of Computers, 2021, 38(10): 3044-3048. [23] 蒋雪瑶, 力维辰, 刘井平, 等. 基于多模态模式迁移的知识图谱实体配图[J]. 计算机工程, 2022, 48(8): 70-76. JIANG X Y, LI W C, LIU J P, et al. Entity image collection based on multi-modality pattern transfer[J]. Computer Engineering, 2022, 48(8): 70-76. [24] 邹长龙, 安敬民, 李冠宇. 基于邻域聚合与CNN的知识图谱实体类型补全[J/OL]. 计算机工程(2022-05-06)[2022-07-01]. https://doi.org/10.19678/j.issn.1000-3428.0063989. ZOU C L, AN J M, LI G Y. Knowledge graph entity type completion based on neighborhood aggregation and CNN [J/OL]. Computer Engineering (2022-05-06) [2022-07-01]. https://doi.org/10.19678/j.issn.1000-3428.0063989. [25] MATUSZEK C, CABRAL J, WITBROCK M J, et al. An introduction to the syntax and content of Cyc[C]//Proceedings of the 2006 AAAI Spring Symposium on Formalizing and Compiling Background Knowledge and Its Applications to Knowledge Representation and Question Answering, Stanford, Mar 27-29, 2006. Menlo Park: AAAI, 2006: 44-49. [26] AUER S, BIZER C, KOBILAROV G, et al. DBpedia: a nucleus for a web of open data[C]//LNCS 4825: Proceedings of the 6th International Semantic Web Conference, the 2nd Asian Semantic Web Conference, Busan, Nov 11-15, 2007. Berlin, Heidelberg: Springer, 2007: 722-735. [27] DONG X, GABRILOVICH E, HEITZ G, et al. Knowledge vault: a web-scale approach to probabilistic knowledge fusion[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, Aug 24-27, 2014. New York: ACM, 2014: 601-610. [28] 于合龙, 孙琳. 基于知识图谱的AMI资源精准推荐算法[J]. 计算机仿真, 2021, 38(12): 485-489. YU H L, SUN L. Accurate recommendation algorithm of agricultural massive information resources based on know-ledge map[J]. Computer Integrated Manufacturing Systems, 2021, 38(12): 485-489. [29] HUANG J, ZHAO W X, DOU H J, et al. Improving sequential recommendation with knowledge-enhanced memory networks[C]//Proceedings of the 41st International ACM SIGIR Conference on Research and Development in Information Retrieval, Ann Arbor, Jul 8-12, 2018. New York: ACM, 2018: 505-514. [30] DEY R, SALEM F M. Gate-variants of gated recurrent unit (GRU) neural networks[C]//Proceedings of the 2017 IEEE 60th International Midwest Symposium on Circuits and Systems, Boston, Aug 6-9, 2017. Piscataway: IEEE, 2017: 1597-1600. [31] RENDLE S, FREUDENTHALER C, GANTNER Z, et al. BPR: Bayesian personalized ranking from implicit feedback[J]. arXiv:1205.2618, 2012. [32] BORDES A, USUNIER N, GARCIA-DURAN A, et al. Translating embeddings for modeling multi-relational data[C]//Proceedings of the 27th Annual Conference on Neural Information Processing Systems, Lake Tahoe, Dec 5-8, 2013. Red Hook: Curran Associates, 2013: 2787-2795. [33] ZHANG J, SHI X, KING I, et al. Dynamic key-value memory networks for knowledge tracing[C]//Proceedings of the 26th International Conference on World Wide Web, Perth, Apr 3-7, 2017. New York: ACM, 2017: 765-774. [34] KARLIK B, OLGAC A V. Performance analysis of various activation functions in generalized MLP architectures of neural networks[J]. International Journal of Artificial Intelligence and Expert Systems, 2011, 1(4): 111-122. [35] YANG D, GUO Z, WANG Z, et al. A knowledge-enhanced deep recommendation framework incorporating GAN-based models[C]//Proceedings of the 2018 IEEE International Conference on Data Mining, Singapore, Nov 17-20, 2018. Washington: IEEE Computer Society, 2018: 1368-1373. [36] DONG Y, CHAWLA N V, SWAMI A. Metapath2Vec: scalable representation learning for heterogeneous networks[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Halifax, Aug 13-17, 2017. New York: ACM, 2017: 135-144. [37] MIKOLOV T, CHEN K, CORRADO G, et al. Efficient estimation of word representations in vector space[J]. arXiv:1301.3781, 2013. [38] YE Y, WANG X, YAO J, et al. Bayes embedding (BEM): refining representation by integrating knowledge graphs and behavior-specific networks[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management, Beijing, Nov 3-7, 2019. New York: ACM, 2019: 679-688. [39] HAMILTON W L, YING R, LESKOVEC J. Inductive representation learning on large graphs[C]//Proceedings of the Annual Conference on Neural Information Processing Systems 2017, Long Beach, Dec 4-9, 2017. Red Hook: Curran Associates, 2017: 1024-1034. [40] WANG Q, MAO Z, WANG B, et al. Knowledge graph embedding: a survey of approaches and applications[J]. IEEE Transactions on Knowledge and Data Engineering, 2017, 29(12): 2724-2743. [41] ZHANG F, YUAN N J, LIAN D, et al. Collaborative knowledge base embedding for recommender systems[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, Aug 13-17, 2016. New York: ACM, 2016: 353-362. [42] LIN Y, LIU Z, SUN M, et al. Learning entity and relation embeddings for knowledge graph completion[C]//Proceedings of the 29th AAAI Conference on Artificial Intelligence, Austin, Jan 25-30, 2015. Menlo Park: AAAI, 2015: 2181-2187. [43] WANG H, ZHANG F, ZHAO M, et al. Multi-task feature learning for knowledge graph enhanced recommendation[C]//Proceedings of the 2019 World Wide Web Conference, San Francisco, May 13-17, 2019. New York: ACM, 2019: 2000-2010. [44] CAO Y, WANG X, HE X, et al. Unifying knowledge graph learning and recommendation: towards a better understanding of user preferences[C]//Proceedings of the 2019 World Wide Web Conference, San Francisco, May 13-17, 2019. New York: ACM, 2019: 151-161. [45] YU X, REN X, GU Q, et al. Collaborative filtering with entity similarity regularization in heterogeneous information networks[C]//Proceedings of the 23rd International Joint Conference on Artificial Intelligence, Beijing, Aug 3-9, 2013. Menlo Park: AAAI, 2013: 27. [46] LEE D D, SEUNG H S. Learning the parts of objects by non-negative matrix factorization[J]. Nature, 1999, 401(6755): 788-791. [47] LUO C, PANG W, WANG Z, et al. Hete-CF: social-based collaborative filtering recommendation using heterogeneous relations[C]//Proceedings of the 2014 IEEE International Conference on Data Mining, Shenzhen, Dec 14-17, 2014. Washington: IEEE Computer Society, 2014: 917-922. [48] YU X, REN X, SUN Y, et al. Recommendation in heterogeneous information networks with implicit user feedback[C]//Proceedings of the 7th ACM Conference on Recommender Systems, Hong Kong, China, Oct 12-16, 2013. New York: ACM, 2013: 347-350. [49] YU X, REN X, SUN Y, et al. Personalized entity recommendation: a heterogeneous information network approach[C]//Proceedings of the 7th ACM International Conference on Web Search and Data Mining, New York, Feb 24-28, 2014. New York: ACM, 2014: 283-292. [50] SHI C, ZHANG Z, LUO P, et al. Semantic path based personalized recommendation on weighted heterogeneous information networks[C]//Proceedings of the 24th ACM International Conference on Information and Knowledge Management, Melbourne, Oct 18-23, 2015. New York: ACM, 2015: 453-462. [51] ZHAO H, YAO Q, LI J, et al. Meta-graph based recommendation fusion over heterogeneous information networks[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Halifax, Aug 13-17, 2017. New York: ACM, 2017: 635-644. [52] SUN Z, YANG J, ZHANG J, et al. Recurrent knowledge graph embedding for effective recommendation[C]//Proceedings of the 12th ACM Conference on Recommender Systems, Vancouver, Oct 2, 2018. New York: ACM, 2018: 297-305. [53] WANG X, WANG D, XU C, et al. Explainable reasoning over knowledge graphs for recommendation[C]//Proceedings of the 33rd AAAI Conference on Artificial Intelligence, the 31st Innovative Applications of Artificial Intelligence Conference, the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, Honolulu, Jan 27- Feb 1, 2019. Menlo Park: AAAI, 2019: 5329-5336. [54] HU B, SHI C, ZHAO W X, et al. Leveraging meta-path based context for top-n recommendation with a neural co-attention model[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, London, Aug 19-23, 2018. New York: ACM, 2018: 1531-1540. [55] MA W, ZHANG M, CAO Y, et al. Jointly learning explainable rules for recommendation with knowledge graph[C]//Proceedings of the 2019 World Wide Web Conference, San Francisco, May 13-17, 2019. New York: ACM, 2019: 1210-1221. [56] XIAN Y, FU Z, MUTHUKRISHNAN S, et al. Reinforcement knowledge graph reasoning for explainable recommendation[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, Paris, Jul 21-25, 2019. New York: ACM, 2019: 285-294. [57] WANG H, ZHANG F, WANG J, et al. RippleNet: propagating user preferences on the knowledge graph for recommender systems[C]//Proceedings of the 27th ACM International Conference on Information and Knowledge Management, Torino, Oct 22-26, 2018. New York: ACM, 2018: 417-426. [58] TANG X, WANG T, YANG H, et al. AKUPM: attention-enhanced knowledge-aware user preference model for recommendation[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Anchorage, Aug 4-8, 2019. New York: ACM, 2019: 1891-1899. [59] WANG H, ZHAO M, XIE X, et al. Knowledge graph convolutional networks for recommender systems[C]//Proceedings of the 2019 World Wide Web Conference, San Francisco, May 13-17, 2019. New York: ACM, 2019: 3307-3313. [60] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[J]. arXiv:1609.02907, 2016. [61] WANG H, ZHANG F, ZHANG M, et al. Knowledge-aware graph neural networks with label smoothness regularization for recommender systems[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Anchorage, Aug 4-8, 2019. New York: ACM, 2019: 968-977. [62] WANG X, HE X, CAO Y, et al. KGAT: knowledge graph attention network for recommendation[C]//Proceedings of the 25th ACM SIGKDD International Conference on Know-ledge Discovery and Data Mining, Anchorage, Aug 4-8, 2019. New York: ACM, 2019: 950-958. [63] QU Y, BAI T, ZHANG W, et al. An end-to-end neighborhood-based interaction model for knowledge-enhanced recommendation[C]//Proceedings of the 1st International Workshop on Deep Learning Practice for High-Dimensional Sparse Data, Anchorage, Aug 5, 2019. New York: ACM, 2019: 1-9. [64] ZHAO J, ZHOU Z, GUAN Z, et al. IntentGC: a scalable graph convolution framework fusing heterogeneous information for recommendation[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Anchorage, Aug 4-8, 2019. New York: ACM, 2019: 2347-2357. [65] SHA X, SUN Z, ZHANG J. Hierarchical attentive knowledge graph embedding for personalized recommendation[J]. Electronic Commerce Research and Applications, 2021, 48: 101071. [66] WANG H, ZHANG F, XIE X, et al. DKN: deep knowledge-aware network for news recommendation[C]//Proceedings of the 2018 World Wide Web Conference, Lyon, Apr 23-27, 2018. New York: ACM, 2018: 1835-1844. [67] JI G, HE S, XU L, et al. Knowledge graph embedding via dynamic mapping matrix[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing of the Asian Federation of Natural Language Processing, Beijing, Jul 26-31, 2015. Stroudsburg: ACL, 2015: 687-696. [68] SZE V, CHEN Y H, YANG T J, et al. Efficient processing of deep neural networks: a tutorial and survey[J]. Proceedings of the IEEE, 2017, 105(12): 2295-2329. [69] WANG H, ZHANG F, HOU M, et al. SHINE: signed heterogeneous information network embedding for sentiment link prediction[C]//Proceedings of the 11th ACM International Conference on Web Search and Data Mining, Marina Del Rey, Feb 5-9, 2018. New York: ACM, 2018: 592-600. [70] AI Q, AZIZI V, CHEN X, et al. Learning heterogeneous knowledge base embeddings for explainable recommendation[J]. Algorithms, 2018, 11(9): 137. [71] LIU X, AGGARWAL C, LI Y F, et al. Kernelized matrix factorization for collaborative filtering[C]//Proceedings of the 2016 SIAM International Conference on Data Mining, Miami, May 5-7, 2016. Philadelphia: SIAM, 2016: 378-386. [72] LU S, WANG B, WANG H, et al. A hybrid collaborative filtering algorithm based on KNN and gradient boosting[C]//Proceedings of the 2018 13th International Conference on Computer Science & Education, Colombo, Aug 8-11, 2018. Piscataway: IEEE, 2018: 1-5. [73] Amazon review data[EB/DS]. [2022-05-05]. http://jmcauley. ucsd.edu/data/amazon/. [74] DAVAGDORJ K, PARK K H, RYU K H. A collaborative filtering recommendation system for rating prediction[C]//Proceedings of the 15th International Conference on IIH-MSP in Conjunction with the 12th International Conference on FITAT, Jilin, Jul 18-20, 2019. Singapore: Springer, 2019: 265-271. [75] SONG W, DUAN Z, YANG Z, et al. Explainable know-ledge graph-based recommendation via deep reinforcement learning[J]. arXiv:1906.09506, 2019. [76] UYAR A, ALIYU F M. Evaluating search features of Google knowledge graph and Bing satori: entity types, list searches and query interfaces[J]. Online Information Review, 2015, 39(2): 197-213. [77] 丁来旭, 刘洪娟. 复杂网络上基于多维特征表示学习的推荐算法[J]. 东北大学学报(自然科学版), 2022, 43(3): 359-367. DING L X, LIU H J. Recommendation algorithm based on multi-dimensional feature representation learning in complex networks[J]. Journal of Northeastern University (Natural Science), 2022, 43(3): 359-367. [78] HARPER F M, KONTAN J A. The MovieLens datasets: history and context[J]. ACM Transactions on Interactive Intelligent Systems, 2015, 5(4): 1-19. [79] 田萱, 丁琪, 廖子惠, 等. 基于深度学习的新闻推荐算法研究综述[J]. 计算机科学与探索, 2021, 15(6): 971-998. TIAN X, DING Q, LIAO Z H, et al. Survey on deep learning based news recommendation algorithm[J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(6): 971-998. [80] VRANDE?I? D, KR?TZSCH M. Wikidata: a free collabo-rative knowledge base[J]. Communications of the ACM, 2014, 57(10): 78-85. [81] 韩滕跃, 牛少彰, 张文. 基于对比学习的多模态序列推荐算法[J]. 计算机应用, 2022, 42(6): 1683-1688. HAN T Y, NIU S Z, ZHANG W. Multimodal sequential recommendation algorithm based on contrastive learning[J]. Journal of Computer Applications, 2022, 42(6): 1683-1688. [82] YANG J, YECIES B. Mining Chinese social media UGC: a big-data framework for analyzing Douban movie reviews[J]. Journal of Big Data, 2016, 3: 1-23. [83] SHAHRIARI M, KLAMMA R. Signed social networks: link prediction and overlapping community detection[C]//Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, Paris, Aug 25-28, 2015. New York: ACM, 2015: 1608-1609. [84] JIN W, JIANG H, QU M, et al. Recurrent event network: global structure inference over temporal knowledge graph[J]. arXiv:1904.05530, 2019. [85] CHEN S Y, YU Y, DA Q, et al. Stabilizing reinforcement learning in dynamic environment with application to online recommendation[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, London, Aug 19-23, 2018. New York: ACM, 2018: 1187-1196. [86] SONG W, XIAO Z, WANG Y, et al. Session-based social recommendation via dynamic graph attention networks[C]//Proceedings of the 12th ACM International Conference on Web Search and Data Mining, Melbourne, Feb 11-15, 2019. New York: ACM, 2019: 555-563. [87] 张佳, 董守斌. 基于评论方面级用户偏好迁移的跨领域推荐算法[J]. 计算机科学, 2022, 49(9): 41-47. ZHANG J, DONG S B. Cross-domain recommendation based on review aspect-level user preference transfer[J]. Computer Science, 2022, 49(9): 41-47. [88] ZHU Y, TANG Z, LIU Y, et al. Personalized transfer of user preferences for cross-domain recommendation[C]//Proceedings of the 15th ACM International Conference on Web Search and Data Mining, Feb 21-25, 2022. New York: ACM, 2022: 1507-1515. |
[1] | HAN Hu, HAO Jun, ZHANG Qiankun, MENG Tiantian. Knowledge-Enhanced Interactive Attention Model for Aspect-Based Sentiment Analysis [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(3): 709-718. |
[2] | MA Li, YAO Weifan. Link Prediction Method Combining Relational Path and Directed Subgraph Reasoning [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(2): 478-488. |
[3] | YIN Hua, XIAO Shiran, CHEN Zhiquan, HU Zhensheng, LONG Yongchao. Knowledge Graph Completion Method Based on Multi-semantic Relation Embedding [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(2): 467-477. |
[4] | SUN Shuifa, LI Xiaolong, LI Weisheng, LEI Dajiang, LI Sihui, YANG Liu, WU Yirong. Review of Graph Neural Networks Applied to Knowledge Graph Reasoning [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(1): 27-52. |
[5] | GAO Yang, LIU Yuan. Recommendation Algorithm Combining Social Relationship and Knowledge Graph [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(1): 238-250. |
[6] | SA Rina, LI Yanling, LIN Min. Survey of Question Answering Based on Knowledge Graph Reasoning [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(8): 1727-1741. |
[7] | TIAN Xuan, CHEN Hangxue. Survey on Applications of Knowledge Graph Embedding in Recommendation Tasks [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(8): 1681-1705. |
[8] | YU Huilin, CHEN Wei, WANG Qi, GAO Jianwei, WAN Huaiyu. Knowledge Graph Link Prediction Based on Subgraph Reasoning [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(8): 1800-1808. |
[9] | CHEN Jiangmei, ZHANG Wende. Review of Point of Interest Recommendation Systems in Location-Based Social Networks [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(7): 1462-1478. |
[10] | HAN Yi, QIAO Linbo, LI Dongsheng, LIAO Xiangke. Review of Knowledge-Enhanced Pre-trained Language Models [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(7): 1439-1461. |
[11] | GUO Xiaowang, XIA Hongbin, LIU Yuan. Hybrid Recommendation Model of Knowledge Graph and Graph Convolutional Network [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(6): 1343-1353. |
[12] | DONG Wenbo, SUN Shiliang, YIN Minzhi. Research and Development of Medical Knowledge Graph Reasoning [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(6): 1193-1213. |
[13] | WANG Baoliang, PAN Wencai. Two-Terminal Neighbor Information Fusion Recommendation Algorithm Based on Knowledge Graph [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(6): 1354-1361. |
[14] | WU Sen, DONG Yaxian, WEI Guiying, GAO Xiaonan. Research on User Similarity Calculation of Collaborative Filtering for Sparse Data [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(5): 1043-1052. |
[15] | ZHANG Zichen, YUE Kun, QI Zhiwei, DUAN Liang. Incremental Construction of Time-Series Knowledge Graph [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(3): 598-607. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/