Journal of Frontiers of Computer Science and Technology ›› 2022, Vol. 16 ›› Issue (6): 1343-1353.DOI: 10.3778/j.issn.1673-9418.2110057
• Artificial Intelligence • Previous Articles Next Articles
GUO Xiaowang1, XIA Hongbin1,2,+(), LIU Yuan1,2
Received:
2021-10-22
Revised:
2022-01-25
Online:
2022-06-01
Published:
2022-06-20
About author:
GUO Xiaowang, born in 1996, M.S. candidate.Her research interests include machine learning and recommendation system.Supported by:
通讯作者:
+ E-mail: hbxia@163.com作者简介:
郭晓旺(1996—),女,河南安阳人,硕士研究生,主要研究方向为机器学习、推荐系统。基金资助:
CLC Number:
GUO Xiaowang, XIA Hongbin, LIU Yuan. Hybrid Recommendation Model of Knowledge Graph and Graph Convolutional Network[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(6): 1343-1353.
郭晓旺, 夏鸿斌, 刘渊. 融合知识图谱与图卷积网络的混合推荐模型[J]. 计算机科学与探索, 2022, 16(6): 1343-1353.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2110057
Category | MovieLens-1M | Book-Crossing | Last.FM |
---|---|---|---|
Users | 6 036 | 17 860 | 1 872 |
Items | 2 347 | 14 910 | 3 846 |
Interaction | 753 772 | 139 746 | 42 346 |
Entities | 6 279 | 24 039 | 9 366 |
Relations | 7 | 10 | 60 |
KGtriples | 20 195 | 19 793 | 15 518 |
Table 1 Basic statistics of three datasets
Category | MovieLens-1M | Book-Crossing | Last.FM |
---|---|---|---|
Users | 6 036 | 17 860 | 1 872 |
Items | 2 347 | 14 910 | 3 846 |
Interaction | 753 772 | 139 746 | 42 346 |
Entities | 6 279 | 24 039 | 9 366 |
Relations | 7 | 10 | 60 |
KGtriples | 20 195 | 19 793 | 15 518 |
Dataset | | | | | | |
---|---|---|---|---|---|---|
MovieLens-1M | 8 | 8 | 3 | 2 | 0.5 | 1E-6 |
Book-Crossing | 8 | 8 | 2 | 3 | 0.1 | 5E-7 |
Last.FM | 4 | 4 | 2 | 2 | 0.1 | 1E-6 |
Table 2 Hyper-parameter settings of HKC
Dataset | | | | | | |
---|---|---|---|---|---|---|
MovieLens-1M | 8 | 8 | 3 | 2 | 0.5 | 1E-6 |
Book-Crossing | 8 | 8 | 2 | 3 | 0.1 | 5E-7 |
Last.FM | 4 | 4 | 2 | 2 | 0.1 | 1E-6 |
Model | MovieLens-1M | Book-Crossing | Last.FM | |||
---|---|---|---|---|---|---|
AUC | ACC | AUC | ACC | AUC | ACC | |
LibFM | 0.892 3 | 0.812 0 | 0.684 7 | 0.640 0 | 0.778 1 | 0.708 9 |
DKN | 0.671 2 | 0.568 0 | 0.620 7 | 0.588 3 | 0.603 2 | 0.573 1 |
KGNN_LS | 0.913 7 | 0.840 5 | 0.689 7 | 0.635 3 | 0.795 4 | 0.726 0 |
| 0.920 0 | 0.842 2 | 0.720 4 | 0.647 7 | 0.789 1 | 0.722 0 |
KGCN | 0.906 7 | 0.831 3 | 0.694 4 | 0.635 4 | 0.794 1 | 0.723 6 |
MKR | 0.915 4 | 0.842 0 | 0.734 2 | 0.702 2 | 0.794 7 | 0.746 1 |
| 0.915 2 | 0.840 5 | 0.740 7 | 0.655 2 | 0.841 0 | 0.744 4 |
HKC | 0.922 3 | 0.848 8 | 0.741 0 | 0.697 7 | 0.805 3 | 0.748 0 |
Table 3 Results of AUC and ACC in CTR prediction
Model | MovieLens-1M | Book-Crossing | Last.FM | |||
---|---|---|---|---|---|---|
AUC | ACC | AUC | ACC | AUC | ACC | |
LibFM | 0.892 3 | 0.812 0 | 0.684 7 | 0.640 0 | 0.778 1 | 0.708 9 |
DKN | 0.671 2 | 0.568 0 | 0.620 7 | 0.588 3 | 0.603 2 | 0.573 1 |
KGNN_LS | 0.913 7 | 0.840 5 | 0.689 7 | 0.635 3 | 0.795 4 | 0.726 0 |
| 0.920 0 | 0.842 2 | 0.720 4 | 0.647 7 | 0.789 1 | 0.722 0 |
KGCN | 0.906 7 | 0.831 3 | 0.694 4 | 0.635 4 | 0.794 1 | 0.723 6 |
MKR | 0.915 4 | 0.842 0 | 0.734 2 | 0.702 2 | 0.794 7 | 0.746 1 |
| 0.915 2 | 0.840 5 | 0.740 7 | 0.655 2 | 0.841 0 | 0.744 4 |
HKC | 0.922 3 | 0.848 8 | 0.741 0 | 0.697 7 | 0.805 3 | 0.748 0 |
Model | MovieLens-1M | Book-Crossing | Last.FM | |||
---|---|---|---|---|---|---|
AUC | ACC | AUC | ACC | AUC | ACC | |
HKC | 0.922 3 | 0.848 8 | 0.741 0 | 0.697 7 | 0.805 3 | 0.748 0 |
HKC-n | 0.921 0 | 0.845 5 | 0.695 4 | 0.611 8 | 0.778 0 | 0.713 1 |
HKC-c | 0.920 1 | 0.846 0 | 0.746 3 | 0.702 0 | 0.798 0 | 0.747 1 |
Table 4 Model ablation study
Model | MovieLens-1M | Book-Crossing | Last.FM | |||
---|---|---|---|---|---|---|
AUC | ACC | AUC | ACC | AUC | ACC | |
HKC | 0.922 3 | 0.848 8 | 0.741 0 | 0.697 7 | 0.805 3 | 0.748 0 |
HKC-n | 0.921 0 | 0.845 5 | 0.695 4 | 0.611 8 | 0.778 0 | 0.713 1 |
HKC-c | 0.920 1 | 0.846 0 | 0.746 3 | 0.702 0 | 0.798 0 | 0.747 1 |
Optimizer | MovieLens-1M | |
---|---|---|
AUC | ACC | |
SGD | 0.922 3 | 0.847 7 |
RMSprop | 0.918 9 | 0.843 5 |
Adamax | 0.920 5 | 0.846 1 |
Adam | 0.922 3 | 0.848 8 |
Table 5 Research on performance of HKC model by different optimizers
Optimizer | MovieLens-1M | |
---|---|---|
AUC | ACC | |
SGD | 0.922 3 | 0.847 7 |
RMSprop | 0.918 9 | 0.843 5 |
Adamax | 0.920 5 | 0.846 1 |
Adam | 0.922 3 | 0.848 8 |
[1] | KOREN Y, BELL R M, VOLINSKY C. Matrix factoriza-tion techniques for recommender systems[J]. IEEE Computer, 2009, 42(8): 30-37. |
[2] | JAMALI M, ESTER M. TrustWalker: a random walk model for combining trust-based and item-based recommendation[C]// Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Paris, Jun 28-Jul 1, 2009. New York: ACM, 2009: 397-406. |
[3] | WANG Y Q, SHANG W Q. Personalized news recommen-dation based on consumers’ click behavior[C]// Proceedings of the 12th International Conference on Fuzzy Systems and Knowledge Discovery, Zhangjiajie, Aug 15-17, 2015. Pisca-taway: IEEE, 2015: 634-638. |
[4] |
WANG J, WANG H W, ZHAO M, et al. Joint topic-semantic-aware social matrix factorization for online voting recom-mendation[J]. Knowledge-Based Systems, 2020, 210: 106433.
DOI URL |
[5] | WANG H W, ZHANG F Z, HOU M, et al. SHINE: signed heterogeneous information network embedding for sen-timent link prediction[C]// Proceedings of the 11th ACM International Conference on Web Search and Data Mining, Los Angeles, Feb 5-9, 2018. New York: ACM, 2018: 592-600. |
[6] |
ZHANG D H, LIU L N, WEI Q, et al. Neighborhood agg-regation collaborative filtering based on knowledge graph[J]. Applied Sciences, 2020, 10(11): 3818.
DOI URL |
[7] | ZHANG F Z, YUAN J, LIAN D F, et al. Collaborative know-ledge base embedding for recommender systems[C]// Pro-ceedings of the 22nd ACM SIGKDD International Confe-rence on Knowledge Discovery and Data Mining, San Fran-cisco, Aug 13-17, 2016. New York: ACM, 2016: 353-362. |
[8] | ZHANG Y F, AI Q Y, CHEN X, et al. Learning over knowledge-base embeddings for recommendation[J]. arXiv: 1803. 06540, 2018. |
[9] |
WANG Q, MAO Z D, WANG B, et al. Knowledge graph embedding: a survey of approaches and applications[J]. IEEE Transactions on Knowledge and Data Engineering, 2017, 29(12): 2724-2743.
DOI URL |
[10] | 高仰, 刘渊. 融合知识图谱和短期偏好的推荐算法[J]. 计算机科学与探索, 2021, 15(6): 1133-1144. |
GAO Y, LIU Y. Recommendation algorithm combining know-ledge graph and short-term preferences[J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(6): 1133-1144. | |
[11] | WANG H W, ZHANG F Z, ZHAO M, et al. Multi-task fea-ture learning for knowledge graph enhanced recommen-dation[C]// Proceedings of the 2019 World Wide Web Con-ference, San Francisco, May 13-17, 2019. New York: ACM, 2019: 2000-2010. |
[12] | WANG H W, ZHAO M, XIE X, et al. Knowledge graph convolutional networks for recommender systems[C]// Proceedings of the 2019 World Wide Web Conference, San Francisco, May 13-17, 2019. New York: ACM, 2019: 3307-3313. |
[13] | WANG H W, ZHANG F Z, WANG J L, et al. RippleNet: propagating user preferences on the knowledge graph for recommender systems[C]// Proceedings of the 27th ACM International Conference on Information and Knowledge Management, Torino, Oct 22-26, 2018. New York: ACM, 2018: 417-426. |
[14] |
ZHOU J, CUI G, ZHANG Z, et al. Graph neural networks: a review of methods and applications[J]. AI Open, 2020, 1: 57-81.
DOI URL |
[15] | YING R, HE R N, CHEN K F, et al. Graph convolutional neural networks for web-scale recommender systems[C]// Proceedings of the 24th ACM SIGKDD International Con-ference on Knowledge Discovery and Data Mining, London, Aug 19-23, 2018. New York: ACM, 2018: 974-983. |
[16] | YANG Z X, DONG S B. HAGERec: hierarchical attention graph convolutional network incorporating knowledge graph for explainable recommendation[J]. Knowledge-Based Sys-tems, 2020, 204: 106194. |
[17] | WANG H W, ZHANG F Z, XIE X, et al. DKN: deep knowledge-aware network for news recommendation[C]// Proceedings of the 2018 World Wide Web Conference, Lyon, Apr 23-27, 2018. New York: ACM, 2018: 1835-1844. |
[18] | YU X, REN X, SUN Y Z, et al. Personalized entity recom-mendation: a heterogeneous information network approach[C]// Proceedings of the 7th ACM International Conference on Web Search and Data Mining, New York, Feb 24-28, 2014. New York: ACM, 2014: 283-292. |
[19] | SUN Z, YANG J, ZHANG J, et al. Recurrent knowledge graph embedding for effective recommendation[C]// Procee-dings of the 12th ACM Conference on Recommender Systems, Vancouver, Oct 2-7, 2018. New York: ACM, 2018: 297-305. |
[20] | WANG X, WANG D X, XU C R, et al. Explainable reasoning over knowledge graphs for recommendation[C]// Procee-dings of the 33rd AAAI Conference on Artificial Intelli-gence, the 31st Innovative Applications of Artificial Intel-ligence Conference, the 9th AAAI Symposium on Educa-tional Advances in Artificial Intelligence, Honolulu, Jan 27-Feb 1, 2019. Menlo Park: AAAI, 2019: 5329-5336. |
[21] | 李世宝, 张益维, 刘建航, 等. 基于知识图谱共同邻居排序采样的推荐模型[J]. 电子与信息学报, 2021, 43(12): 3522-3529. |
LI S B, ZHANG Y W, LIU J H, et al. Recommendation model based on public neighbor sorting and sampling of knowledge graph[J]. Journal of Electronics and Information Technology, 2021, 43(12): 3522-3529. | |
[22] | RENDLE S. Factorization machines with LibFM[J]. ACM Transactions on Intelligent Systems and Technology, 2012, 3(3): 57. |
[23] | WANG H W, ZHANG F Z, ZHANG M D, et al. Knowledge-aware graph neural networks with label smoothness regu-larization for recommender systems[C]// Proceedings of the 25th ACM SIGKDD International Conference on Know-ledge Discovery and Data Mining, Anchorage, Aug 4-8, 2019. New York: ACM, 2019: 968-977. |
[24] | WANG Z, LIN G Y, TAN H B, et al. CKAN: collaborative knowledge-aware attentive network for recommender sys-tems[C]// Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020: 219-228. |
[1] | YU Huilin, CHEN Wei, WANG Qi, GAO Jianwei, WAN Huaiyu. Knowledge Graph Link Prediction Based on Subgraph Reasoning [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(8): 1800-1808. |
[2] | SA Rina, LI Yanling, LIN Min. Survey of Question Answering Based on Knowledge Graph Reasoning [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(8): 1727-1741. |
[3] | TIAN Xuan, CHEN Hangxue. Survey on Applications of Knowledge Graph Embedding in Recommendation Tasks [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(8): 1681-1705. |
[4] | HAN Yi, QIAO Linbo, LI Dongsheng, LIAO Xiangke. Review of Knowledge-Enhanced Pre-trained Language Models [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(7): 1439-1461. |
[5] | DONG Wenbo, SUN Shiliang, YIN Minzhi. Research and Development of Medical Knowledge Graph Reasoning [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(6): 1193-1213. |
[6] | WANG Baoliang, PAN Wencai. Two-Terminal Neighbor Information Fusion Recommendation Algorithm Based on Knowledge Graph [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(6): 1354-1361. |
[7] | ZHANG Zichen, YUE Kun, QI Zhiwei, DUAN Liang. Incremental Construction of Time-Series Knowledge Graph [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(3): 598-607. |
[8] | LI Xiang, YANG Xingyao, YU Jiong, QIAN Yurong, ZHENG Jie. Double End Knowledge Graph Convolutional Networks for Recommender Systems [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(1): 176-184. |
[9] | WU Jiawei, SUN Yanchun. Recommendation System for Medical Consultation Integrating Knowledge Graph and Deep Learning Methods [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(8): 1432-1440. |
[10] | GAO Yang, LIU Yuan. Recommendation Algorithm Combining Knowledge Graph and Short-Term Preferences [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(6): 1133-1144. |
[11] | SHU Shitai, LI Song, HAO Xiaohong, ZHANG Liping. Knowledge Graph Embedding Technology: A Review [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(11): 2048-2062. |
[12] | CHEN Zirui, WANG Xin, WANG Lin, XU Dawei, JIA Yongzhe. Survey of Open-Domain Knowledge Graph Question Answering [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(10): 1843-1869. |
[13] | LIN Qika, ZHANG Lingling, LIU Jun, ZHAO Tianzhe. Question-aware Graph Convolutional Network for Educational Knowledge Base Question Answering [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(10): 1880-1887. |
[14] | HAN Xinxin, BEN Kerong, ZHANG Xian. Research on Named Entity Recognition Technology in Military Software Testing [J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(5): 740-748. |
[15] | CHEN Qinkuang, CHEN Ke, WU Sai, SHOU Lidan, CHEN Gang. Research About Knowledge Graph Completion Based on Active Learning [J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(5): 769-782. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/