Journal of Frontiers of Computer Science and Technology ›› 2022, Vol. 16 ›› Issue (1): 176-184.DOI: 10.3778/j.issn.1673-9418.2103072
• Artificial Intelligence • Previous Articles Next Articles
LI Xiang, YANG Xingyao+(), YU Jiong, QIAN Yurong, ZHENG Jie
Received:
2021-03-22
Revised:
2021-06-15
Online:
2022-01-01
Published:
2021-06-17
About author:
LI Xiang, born in 1996, M.S. candidate, member of CCF. His research interest is recommender system.Supported by:
通讯作者:
+ E-mail: yangxy@xju.edu.cn作者简介:
李想(1996—), 男, 湖北随州人, 硕士研究生, CCF会员,主要研究方向为推荐系统。基金资助:
CLC Number:
LI Xiang, YANG Xingyao, YU Jiong, QIAN Yurong, ZHENG Jie. Double End Knowledge Graph Convolutional Networks for Recommender Systems[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(1): 176-184.
李想, 杨兴耀, 于炯, 钱育蓉, 郑捷. 基于知识图谱卷积网络的双端推荐算法[J]. 计算机科学与探索, 2022, 16(1): 176-184.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2103072
数据集/图谱 | 数量名称 | MovieLens-1M |
---|---|---|
用户-物品交互 | 用户数量 | 6 036 |
物品数量 | 2 347 | |
用户-物品交互数量 | 753 772 | |
sub-KG | 三元组数量 | 20 195 |
实体数量 | 7 008 | |
关系数量 | 7 | |
| 三元组数量 | 30 180 |
实体数量(不包含用户) | 3 466 | |
关系数量 | 4 |
Table 1 Basic statistics for dataset and knowledge graph
数据集/图谱 | 数量名称 | MovieLens-1M |
---|---|---|
用户-物品交互 | 用户数量 | 6 036 |
物品数量 | 2 347 | |
用户-物品交互数量 | 753 772 | |
sub-KG | 三元组数量 | 20 195 |
实体数量 | 7 008 | |
关系数量 | 7 | |
| 三元组数量 | 30 180 |
实体数量(不包含用户) | 3 466 | |
关系数量 | 4 |
模型 | AUC | Precision | F1 |
---|---|---|---|
MKR | 0.901 6 | 0.823 8 | 0.826 2 |
KGNN-LS | 0.898 4 | 0.819 7 | 0.821 7 |
KGCN | 0.892 7 | 0.813 6 | 0.816 0 |
DEKGCN | 0.916 8 | 0.842 0 | 0.845 0 |
Table 2 Result of AUC, Precision and F1 in CTR prediction
模型 | AUC | Precision | F1 |
---|---|---|---|
MKR | 0.901 6 | 0.823 8 | 0.826 2 |
KGNN-LS | 0.898 4 | 0.819 7 | 0.821 7 |
KGCN | 0.892 7 | 0.813 6 | 0.816 0 |
DEKGCN | 0.916 8 | 0.842 0 | 0.845 0 |
[1] | WANG X, HE X, CAO Y, et al. KGAT: knowledge graph attention network for recommendation[C]// Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, Aug 4-8, 2019. New York: ACM, 2019: 950-958. |
[2] |
HE M, WANG B, DU X. HI2Rec: exploring knowledge in heterogeneous information for movie recommendation[J]. IEEE Access, 2019, 7:30276-30284.
DOI URL |
[3] | 高仰, 刘渊. 融合知识图谱和短期偏好的推荐算法[J]. 计算机科学与探索, 2021, 15(6):1133-1144. |
GAO Y, LIU Y. Recommendation algorithm combining knowledge graph and short-term preferences[J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(6):1133-1144. | |
[4] | 张玉洁, 董政, 孟祥武. 个性化广告推荐系统及其应用研究[J]. 计算机学报, 2021, 44(3):531-563. |
ZHANG Y J, DONG Z, MENG X W. Pesearch on personalized advertising pecommendation systems and their applications[J]. Chinese Journal of Computers, 2021, 44(3):531-563. | |
[5] | 黄立威, 江碧涛, 吕守业, 等. 基于深度学习的推荐系统研究综述[J]. 计算机学报, 2018, 41(7):1619-1647. |
HUANG L W, JIANG B T, LV S Y, et al. Survey on deep learning based recommender systems[J]. Chinese Journal of Computers, 2018, 41(7):1619-1647. | |
[6] |
WANG Q, MAO Z, WANG B, et al. Knowledge graph embedding: a survey of approaches and applications[J]. IEEE Transactions on Knowledge and Data Engineering, 2017, 29(12):2724-2743.
DOI URL |
[7] | BOLLACKER K, EVANS C, PARITOSH P, et al. Freebase: a collaboratively created graph database for structuring human knowledge[C]// Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, Vancouver, Jun 9-12, 2008. New York: ACM, 2008: 1247-1250. |
[8] |
LEHMANN J, ISELE R, JAKOB M, et al. DBpedia—a large-scale, multilingual knowledge base extracted from Wikipedia[J]. Semantic Web, 2015, 6(2):167-195.
DOI URL |
[9] | FABIAN M S, GJERGJI K, GERHARD W. YAGO: a core of semantic knowledge unifying WordNet and Wikipedia[C]// Proceedings of the 16th International World Wide Web Conference, Alberta, May 8-12, 2007. New York: ACM, 2007: 697-706. |
[10] | WANG H, ZHAO M, XIE X, et al. Knowledge graph con-volutional networks for recommender systems[C]// Proceedings of the 2019 World Wide Web Conference, San Francisco, May 13-17, 2019. New York: ACM, 2019: 3307-3313. |
[11] | 李鹏飞, 吴为民. 基于混合模型推荐算法的优化[J]. 计算机科学, 2014, 41(2):68-71. |
LI P F, WU W M. Optimized implementation of hybrid recommendation algorithm[J]. Computer Science, 2014, 41(2):68-71. | |
[12] | 丁少衡, 姬东鸿, 王路路. 基于用户属性和评分的协同过滤推荐算法[J]. 计算机工程与设计, 2015, 36(2):487-491. |
DING S H, JI D H, WANG L L. Collaborative filtering recommendation algorithm based on user attributes and scores[J]. Computer Engineering and Design, 2015, 36(2):487-491. | |
[13] | 申晋祥, 鲍美英. 基于用户聚类与项目划分的优化推荐算法[J]. 计算机系统应用, 2019, 28(6):159-164. |
SHEN J X, DAO M Y. Optimal recommendation algorithm based on user clustering and project partition[J]. Computer Systems & Applications, 2019, 28(6):159-164. | |
[14] | 梁丽君, 李业刚, 张娜娜, 等. 融合用户特征优化聚类的协同过滤算法[J]. 智能系统学报, 2020, 15(6):1091-1096. |
LIANG L J, LI Y G, ZHANG N N, et al. Collaborative filtering algorithm combining user features and preferences in optimized clustering[J]. CAAI Transactions on Intelligent Systems, 2020, 15(6):1091-1096. | |
[15] | 秦川, 祝恒书, 庄福振, 等. 基于知识图谱的推荐系统研究综述[J]. 中国科学(信息科学), 2020, 50(7):937-956. |
QIN C, ZHU H S, ZHUANG F Z, et al. A survey on knowledge graph-based recommender systems[J]. Science in China (Information Sciences), 2020, 50(7):937-956. | |
[16] | WANG H W, ZHANG F Z, HOU M, et al. Shine: signed heterogeneous information network embedding for sentiment link prediction[C]// Proceedings of the 11th ACM International Conference on Web Search and Data Mining, Marina Del Rey, Feb 5-9, 2018. New York: ACM, 2018: 592-600. |
[17] | WANG H W, ZHANG F Z, XIE X, et al. DKN: deep knowledge-aware network for news recommendation[C]// Proceedings of the 2018 World Wide Web Conference, Lyon, Apr 23-27, 2018. New York: ACM, 2018: 1835-1844. |
[18] | ZHANG F Z, YUAN N J, LIAN D F, et al. Collaborative knowledge base embedding for recommender systems[C]// Proceedings of the 22nd ACM SIGKDD International Confer-ence on Knowledge Discovery and Data Mining, San Francisco, Aug 13-17, 2016. New York: ACM, 2016: 353-362. |
[19] | ZHAO H, YAO Q M, LI J D, et al. Meta-graph based recommendation fusion over heterogeneous information networks[C]// Proceedings of the 23rd ACM SIGKDD Inter-national Conference on Knowledge Discovery and Data Mining, Halifax, Aug 13-17, 2017. New York: ACM, 2017: 635-644. |
[20] | YU X, REN X, SUN Y Z, et al. Personalized entity recom-mendation: a heterogeneous information network approach[C]// Proceedings of the 7th ACM International Conference on Web Search and Data Mining, New York, Feb 24-28, 2014. New York: ACM, 2014: 283-292. |
[21] | TANG X L, WANG T Y, YANG H Z, et al. AKUPM: attention-enhanced knowledge-aware user preference model for recommendation[C]// Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, Aug 4-8, 2019. New York: ACM, 2019: 1891-1899. |
[22] | WANG H W, ZHANG F Z, WANG J L, et al. RippleNet: propagating user preferences on the knowledge graph for recommender systems[C]// Proceedings of the 27th ACM International Conference on Information and Knowledge Management, Torino, Oct 22-26, 2018. New York: ACM, 2018: 417-426. |
[23] | WANG H, WANG J, WANG J, et al. GraphGAN: graph representation learning with generative adversarial nets[C]// Proceedings of the 32nd AAAI Conference on Artificial Intelligence, the 30th Innovative Applications of Artificial Intelligence, and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence, New Orleans, Feb 2-7, 2018. Menlo Park: AAAI, 2018: 2508-2515. |
[24] | BORDES A, USUNIER N, GARCÍA-DURÁN A, et al. Translating embeddings for modeling multi-relational data[C]// Proceedings of the 27th Annual Conference on Neural Information Processing Systems,Lake Tahoe, Dec 5-8, 2013. Red Hook: Curran Associates, 2013: 2787-2795. |
[25] | WANG Z, ZHANG J W, FENG J L, et al. Knowledge graph embedding by translating on hyperplanes[C]// Proceedings of the 28th AAAI Conference on Artificial Intelligence, Québec City, Jul 27-31, 2014. Menlo Park: AAAI, 2014: 1112-1119. |
[26] |
LIN H, LIU Y, WANG W, et al. TransR: learning entity and relation embeddings for knowledge resolution[J]. Procedia Computer Science, 2017, 108:345-354.
DOI URL |
[27] | JI G L, HE S Z, XU L H, et al. Knowledge graph embed-ding via dynamic mapping matrix[C]// Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing of the Asian Federation of Natural Language Processing, Beijing, Jul 26-31, 2015. Stroudsburg: ACL, 2015: 687-696. |
[28] | NICKEL M, TRESP V, KRIEGEL H P. Factorizing YAGO: scalable machine learning for linked data[C]// Proceedings of the 21st World Wide Web Conference 2012, Lyon, Apr 16-20, 2012. New York: ACM, 2012: 271-280. |
[29] | YANG B S, YIH W T, HE X D, et al. Embedding entities and relations for learning and inference in knowledge bases[J]. arXiv:1412.6575, 2014. |
[30] | TROUILLON T, WELBL J, RIEDEL S, et al. Complex embeddings for simple link prediction[C]// Proceedings of the 33rd International Conference on Machine Learning, New York, Jun 19-24, 2016: 2071-2080. |
[31] | WANG H W, ZHANG F Z, ZHAO M, et al. Multi-task feature learning for knowledge graph enhanced recommen-dation[C]// Proceedings of the 2019 World Wide Web Con-ference, San Francisco, May 13-17, 2019. New York: ACM, 2019: 2000-2010. |
[32] | WANG H W, ZHANG F Z, ZHANG M D, et al. Knowledge-aware graph neural networks with label smoothness regulariza-tion for recommender systems[C]// Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, Aug 4-8, 2019. New York: ACM, 2019: 968-977. |
[1] | GUO Xiaowang, XIA Hongbin, LIU Yuan. Hybrid Recommendation Model of Knowledge Graph and Graph Convolutional Network [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(6): 1343-1353. |
[2] | XIA Guangbing, LI Ruixuan, GU Xiwu, LIU Wei. Knowledge Representation Learning Based on Multi-source Information Combination [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(3): 591-597. |
[3] | XIAO Zeguan, CHEN Qingliang. Aspect-Based Sentiment Analysis Model with Multiple Grammatical Information [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(2): 395-402. |
[4] | GAO Yang, LIU Yuan. Recommendation Algorithm Combining Knowledge Graph and Short-Term Preferences [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(6): 1133-1144. |
[5] | WANG Weihao, CHEN Songcan. Hyperbolic Factorization Machine [J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(4): 590-597. |
[6] | LIU Zhonghui, ZOU Lu, YANG Mei, MIN Fan. Group Recommendation with Concept of Heuristic Construction [J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(4): 703-711. |
[7] | WANG Yuchen, WANG Baoliang, HOU Yonghong. Bandits Recommendation Algorithm Based on Collaborative Filtering and Context Information [J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(3): 361-373. |
[8] | HE Fengzhen, SHI Jinping. Diversified Recommendation Approach Under Non-Uniform Partition Matroid Constraints [J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(2): 226-238. |
[9] | ZHUANG Fuzhen, LUO Dan HE Qing. Ensemble Local Representation Learning Based Recommendation Algorithm [J]. Journal of Frontiers of Computer Science and Technology, 2018, 12(6): 851-858. |
[10] | GUO Ningning, WANG Baoliang, HOU Yonghong, CHANG Peng. Collaborative Filtering Recommendation Algorithm Based on Characteristics of Social Network [J]. Journal of Frontiers of Computer Science and Technology, 2018, 12(2): 208-217. |
[11] | FANG Qianqi, LIU Ling, WEN Junhao, ZENG Jun, GAO Min. Impact of Social Relationship on Model-Based Social Recommender Systems [J]. Journal of Frontiers of Computer Science and Technology, 2018, 12(1): 82-91. |
[12] | XUE Dongmin, ZHAO Zhihua. Music Preference Elicit Method Based on Fisher Linear Discriminant Analysis and Volatility Sequence [J]. Journal of Frontiers of Computer Science and Technology, 2017, 11(8): 1314-1323. |
[13] | MOU Binhao, ZHANG Zhiheng, ZHANG Lin, MIN Fan. Comparison Study of Collaborative Filtering Algorithms Based on Quadripartite Graph [J]. Journal of Frontiers of Computer Science and Technology, 2017, 11(6): 875-886. |
[14] | LIAN Xubao, LIN Hongfei, XU Bo, LIN Yuan. Rank-Oriented Social Recommendation Algorithm with Item Tag Information [J]. Journal of Frontiers of Computer Science and Technology, 2017, 11(3): 373-381. |
[15] | MAO Yiyu, LIU Jianxun, HU Rong, TANG Mingdong, SHI Min. Sigmoid Function-Based Web Service Collaborative Filtering Recommendation Algorithm [J]. Journal of Frontiers of Computer Science and Technology, 2017, 11(2): 314-322. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/