Journal of Frontiers of Computer Science and Technology ›› 2022, Vol. 16 ›› Issue (1): 185-193.DOI: 10.3778/j.issn.1673-9418.2009049
• Artificial Intelligence • Previous Articles Next Articles
JIANG Guangfeng, HU Pengcheng, YE Hua, YANG Yanlan+()
Received:
2020-09-17
Revised:
2020-11-11
Online:
2022-01-01
Published:
2020-12-03
About author:
JIANG Guangfeng, born in 1995, M.S. candidate. His research interests include pattern recognition and intelligent system, computer vision and video understanding.Supported by:
通讯作者:
+ E-mail: yyl@seu.edu.cn作者简介:
蒋光峰(1995—),男,安徽马鞍山人,硕士研究生,主要研究方向为模式识别与智能系统、计算机视觉、视频理解。基金资助:
CLC Number:
JIANG Guangfeng, HU Pengcheng, YE Hua, YANG Yanlan. Isomorphic Graph Classification Model Based on Reconstruction Error[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(1): 185-193.
蒋光峰, 胡鹏程, 叶桦, 仰燕兰. 基于重构误差的同构图分类模型[J]. 计算机科学与探索, 2022, 16(1): 185-193.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2009049
数据集 | 样本数 | 类别数 | 平均节点数 | 平均边数 | 节点特征维度 |
---|---|---|---|---|---|
AIDS | 2 000 | 2 | 15.69 | 16.20 | 4 |
FRANKENSTEIN | 4 337 | 2 | 16.90 | 17.88 | 780 |
NCI1 | 4 110 | 2 | 29.87 | 32.30 | 0 |
NCI109 | 4 127 | 2 | 29.68 | 32.13 | 0 |
PROTEINS | 1 113 | 2 | 39.06 | 72.82 | 29 |
Table 1 Basic information of benchmark data set
数据集 | 样本数 | 类别数 | 平均节点数 | 平均边数 | 节点特征维度 |
---|---|---|---|---|---|
AIDS | 2 000 | 2 | 15.69 | 16.20 | 4 |
FRANKENSTEIN | 4 337 | 2 | 16.90 | 17.88 | 780 |
NCI1 | 4 110 | 2 | 29.87 | 32.30 | 0 |
NCI109 | 4 127 | 2 | 29.68 | 32.13 | 0 |
PROTEINS | 1 113 | 2 | 39.06 | 72.82 | 29 |
模型 | 图神经网络 | 读出层 | 重构误差 |
---|---|---|---|
GCN | GCN | Sum&MaxPooling | 无 |
Set2Set | GCN | Set2Set | 无 |
SortPool | GCN | SortPool | 无 |
SAGPool | GCN | SAGPool | 无 |
WaveGIC | WaveGIC | Sum&MaxPooling | 无 |
MHAWaveGIC | WaveGIC | MHA Pooling | 无 |
ReWaveGIC | WaveGIC | Sum&MaxPooling | 有 |
RMAWaveGIC | WaveGIC | MHA Pooling | 有 |
Table 2 Comparison of Base and RMAWaveGIC model
模型 | 图神经网络 | 读出层 | 重构误差 |
---|---|---|---|
GCN | GCN | Sum&MaxPooling | 无 |
Set2Set | GCN | Set2Set | 无 |
SortPool | GCN | SortPool | 无 |
SAGPool | GCN | SAGPool | 无 |
WaveGIC | WaveGIC | Sum&MaxPooling | 无 |
MHAWaveGIC | WaveGIC | MHA Pooling | 无 |
ReWaveGIC | WaveGIC | Sum&MaxPooling | 有 |
RMAWaveGIC | WaveGIC | MHA Pooling | 有 |
Model | Index | AIDS | FRANKENSTEIN | NCI1 | NCI109 | PROTEINS |
---|---|---|---|---|---|---|
GCN | Accuracy/% ROC-AUC | 96.80±5.97 0.933 9±0.175 1 | 64.49±2.74 0.672 9±0.035 2 | 77.49±2.50 0.835 0±0.019 6 | 72.86±2.48 0.787 7±0.025 0 | 63.54±6.54 0.662 5±0.052 3 |
Set2Set | Accuracy/% ROC-AUC | 97.20±1.38 0.948 6±0.053 8 | 63.94±3.55 0.665 6±0.040 1 | 75.84±3.09 0.807 7±0.027 4 | 73.73±3.49 0.780 1±0.031 2 | 73.13±5.24 0.758 6±0.046 2 |
SortPool | Accuracy/% ROC-AUC | 99.75±0.49 0.995 4±0.007 5 | 60.99±1.68 0.649 9±0.027 2 | 77.93±2.77 0.838 6±0.020 8 | 74.19±3.75 0.795 4±0.037 1 | 74.75±4.59 0.781 6±0.039 9 |
SAGPool | Accuracy/% ROC-AUC | 96.95±6.03 0.937 7±0.163 6 | 67.03±2.87 0.713 3±0.025 8 | 77.01±1.65 0.833 5±0.022 0 | 75.19±3.13 0.812 1±0.022 1 | 68.54±12.13 0.705 8±0.111 2 |
WaveGIC | Accuracy/% ROC-AUC | 99.05±0.61 0.986 8±0.017 4 | 67.44±2.14 0.724 4±0.027 9 | 75.89±2.56 0.822 8±0.022 7 | 76.08±2.31 0.816 4±0.020 8 | 76.91±3.59 0.798 0±0.035 6 |
MHAWaveGIC | Accuracy/% ROC-AUC | 99.25±0.63 0.988 9±0.015 8 | 69.75±1.83 0.746 2±0.021 9 | 78.56±2.97 0.834 1±0.0241 6 | 77.97±2.12 0.818 0±0.020 7 | 77.27±2.83 0.809 5±0.029 6 |
ReWaveGIC | Accuracy/% ROC-AUC | 98.85±0.82 0.984 7±0.019 9 | 68.64±1.78 0.725 8±0.024 1 | 76.52±3.41 0.824 5±0.027 4 | 75.86±4.09 0.809 5±0.041 7 | 76.28±5.02 0.798 5±0.048 5 |
RMAWaveGIC | Accuracy/% ROC-AUC | 99.20±0.67 0.990 8±0.013 2 | 69.43±1.64 0.738 7±0.020 3 | 79.80±1.99 0.844 8±0.018 3 | 78.99±2.00 0.837 5±0.020 2 | 76.63±3.21 0.799 3±0.033 4 |
Table 3 Experimental results of global model
Model | Index | AIDS | FRANKENSTEIN | NCI1 | NCI109 | PROTEINS |
---|---|---|---|---|---|---|
GCN | Accuracy/% ROC-AUC | 96.80±5.97 0.933 9±0.175 1 | 64.49±2.74 0.672 9±0.035 2 | 77.49±2.50 0.835 0±0.019 6 | 72.86±2.48 0.787 7±0.025 0 | 63.54±6.54 0.662 5±0.052 3 |
Set2Set | Accuracy/% ROC-AUC | 97.20±1.38 0.948 6±0.053 8 | 63.94±3.55 0.665 6±0.040 1 | 75.84±3.09 0.807 7±0.027 4 | 73.73±3.49 0.780 1±0.031 2 | 73.13±5.24 0.758 6±0.046 2 |
SortPool | Accuracy/% ROC-AUC | 99.75±0.49 0.995 4±0.007 5 | 60.99±1.68 0.649 9±0.027 2 | 77.93±2.77 0.838 6±0.020 8 | 74.19±3.75 0.795 4±0.037 1 | 74.75±4.59 0.781 6±0.039 9 |
SAGPool | Accuracy/% ROC-AUC | 96.95±6.03 0.937 7±0.163 6 | 67.03±2.87 0.713 3±0.025 8 | 77.01±1.65 0.833 5±0.022 0 | 75.19±3.13 0.812 1±0.022 1 | 68.54±12.13 0.705 8±0.111 2 |
WaveGIC | Accuracy/% ROC-AUC | 99.05±0.61 0.986 8±0.017 4 | 67.44±2.14 0.724 4±0.027 9 | 75.89±2.56 0.822 8±0.022 7 | 76.08±2.31 0.816 4±0.020 8 | 76.91±3.59 0.798 0±0.035 6 |
MHAWaveGIC | Accuracy/% ROC-AUC | 99.25±0.63 0.988 9±0.015 8 | 69.75±1.83 0.746 2±0.021 9 | 78.56±2.97 0.834 1±0.0241 6 | 77.97±2.12 0.818 0±0.020 7 | 77.27±2.83 0.809 5±0.029 6 |
ReWaveGIC | Accuracy/% ROC-AUC | 98.85±0.82 0.984 7±0.019 9 | 68.64±1.78 0.725 8±0.024 1 | 76.52±3.41 0.824 5±0.027 4 | 75.86±4.09 0.809 5±0.041 7 | 76.28±5.02 0.798 5±0.048 5 |
RMAWaveGIC | Accuracy/% ROC-AUC | 99.20±0.67 0.990 8±0.013 2 | 69.43±1.64 0.738 7±0.020 3 | 79.80±1.99 0.844 8±0.018 3 | 78.99±2.00 0.837 5±0.020 2 | 76.63±3.21 0.799 3±0.033 4 |
Model | Index | AIDS | FRANKENSTEIN | NCI1 | NCI109 | PROTEINS |
---|---|---|---|---|---|---|
GCN | Accuracy/% ROC-AUC | 93.55±9.36 0.836 0±0.256 5 | 64.49±1.97 0.666 4±0.033 7 | 77.49±1.78 0.837 3±0.019 7 | 75.50±2.50 0.814 1±0.025 8 | 65.40±5.44 0.650 4±0.051 4 |
Set2Set | Accuracy/% ROC-AUC | 99.00±0.71 0.991 9±0.010 9 | 65.97±2.86 0.698 1±0.037 1 | 76.55±2.77 0.821 2±0.026 2 | 75.69±2.01 0.798 7±0.024 9 | 73.23±3.79 0.765 1±0.042 7 |
SortPool | Accuracy/% ROC-AUC | 99.75±0.35 0.995 5±0.006 8 | 65.69±2.72 0.701 7±0.019 7 | 78.23±2.83 0.843 1±0.023 0 | 75.43±4.19 0.819 1±0.049 1 | 71.52±4.06 0.761 4±0.047 7 |
SAGPool | Accuracy/% ROC-AUC | 91.30±9.75 0.742 2±0.332 4 | 63.55±2.55 0.666 1±0.024 6 | 75.69±2.61 0.807 2±0.030 8 | 71.89±2.77 0.783 4±0.027 6 | 71.89±2.77 0.783 4±0.027 6 |
WaveGIC | Accuracy/% ROC-AUC | 99.10±0.41 0.990 5±0.013 0 | 67.28±2.92 0.721 1±0.021 6 | 77.18±2.54 0.836 0±0.022 8 | 76.42±3.10 0.819 0±0.030 1 | 75.92±5.05 0.797 8±0.047 3 |
MHAWaveGIC | Accuracy/% ROC-AUC | 99.20±0.71 0.991 8±0.010 7 | 69.68±2.27 0.745 7±0.023 2 | 78.74±1.89 0.829 9±0.023 4 | 77.54±2.75 0.823 6±0.026 8 | 77.99±3.50 0.796 6±0.031 4 |
ReWaveGIC | Accuracy/% ROC-AUC | 95.10±7.96 0.881 4±0.224 5 | 68.99±2.56 0.734 4±0.026 8 | 78.66±2.11 0.845 6±0.023 2 | 76.78±2.06 0.820 8±0.015 6 | 75.83±4.66 0.792 3±0.043 1 |
RMAWaveGIC | Accuracy/% ROC-AUC | 99.25±0.63 0.989 2±0.014 4 | 70.16±2.96 0.752 3±0.026 2 | 78.81±2.90 0.837 3±0.025 3 | 78.26±2.26 0.830 4±0.023 9 | 78.26±2.78 0.803 5±0.031 3 |
Table 4 Experimental results of hierarchical model
Model | Index | AIDS | FRANKENSTEIN | NCI1 | NCI109 | PROTEINS |
---|---|---|---|---|---|---|
GCN | Accuracy/% ROC-AUC | 93.55±9.36 0.836 0±0.256 5 | 64.49±1.97 0.666 4±0.033 7 | 77.49±1.78 0.837 3±0.019 7 | 75.50±2.50 0.814 1±0.025 8 | 65.40±5.44 0.650 4±0.051 4 |
Set2Set | Accuracy/% ROC-AUC | 99.00±0.71 0.991 9±0.010 9 | 65.97±2.86 0.698 1±0.037 1 | 76.55±2.77 0.821 2±0.026 2 | 75.69±2.01 0.798 7±0.024 9 | 73.23±3.79 0.765 1±0.042 7 |
SortPool | Accuracy/% ROC-AUC | 99.75±0.35 0.995 5±0.006 8 | 65.69±2.72 0.701 7±0.019 7 | 78.23±2.83 0.843 1±0.023 0 | 75.43±4.19 0.819 1±0.049 1 | 71.52±4.06 0.761 4±0.047 7 |
SAGPool | Accuracy/% ROC-AUC | 91.30±9.75 0.742 2±0.332 4 | 63.55±2.55 0.666 1±0.024 6 | 75.69±2.61 0.807 2±0.030 8 | 71.89±2.77 0.783 4±0.027 6 | 71.89±2.77 0.783 4±0.027 6 |
WaveGIC | Accuracy/% ROC-AUC | 99.10±0.41 0.990 5±0.013 0 | 67.28±2.92 0.721 1±0.021 6 | 77.18±2.54 0.836 0±0.022 8 | 76.42±3.10 0.819 0±0.030 1 | 75.92±5.05 0.797 8±0.047 3 |
MHAWaveGIC | Accuracy/% ROC-AUC | 99.20±0.71 0.991 8±0.010 7 | 69.68±2.27 0.745 7±0.023 2 | 78.74±1.89 0.829 9±0.023 4 | 77.54±2.75 0.823 6±0.026 8 | 77.99±3.50 0.796 6±0.031 4 |
ReWaveGIC | Accuracy/% ROC-AUC | 95.10±7.96 0.881 4±0.224 5 | 68.99±2.56 0.734 4±0.026 8 | 78.66±2.11 0.845 6±0.023 2 | 76.78±2.06 0.820 8±0.015 6 | 75.83±4.66 0.792 3±0.043 1 |
RMAWaveGIC | Accuracy/% ROC-AUC | 99.25±0.63 0.989 2±0.014 4 | 70.16±2.96 0.752 3±0.026 2 | 78.81±2.90 0.837 3±0.025 3 | 78.26±2.26 0.830 4±0.023 9 | 78.26±2.78 0.803 5±0.031 3 |
[1] |
BORGWARDT K M, ONG C S, ScHÖNAUER S, et al. Protein function prediction via graph kernels[J]. Bioinformatics, 2005, 21(S1):i47-i56.
DOI URL |
[2] | DUVENAUD D K, MACLAURIN D, AGUILERA-IPARRAGUIRRE J, et al. Convolutional networks on graphs for learning molecular fingerprints[C]// Proceedings of the Annual Conference on Neural Information Processing Systems, Montreal, Dec 7-12, 2015. Red Hook: Curran Associates, 2015: 2224-2232. |
[3] | BACKSTROM L, LESKOVEC J. Supervised random walks: predicting and recommending links in social networks[C]// Proceedings of the 2011 International Conference on Web Search and Data Mining, Hong Kong, China, Feb 9-12, 2011. New York: ACM, 2011: 635-644. |
[4] | BAO J, HE T F, RUAN S J, et al. Planning bike lanes based on sharing-bikes trajectories[C]// Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Halifax, Aug 13-17, 2017. New York: ACM, 2017: 1377-1386. |
[5] | CHAU D H P, NACHENBERG C, WILHELM J, et al. Polonium: tera-scale graph mining and inference for malware detec-tion[C]// Proceedings of the 2011 SIAM International Con-ference on Data Mining, Hilton Phoenix East, Apr 28-30, 2011. Philadelphia: SIAM, 2011: 131-142. |
[6] |
LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11):2278-2324.
DOI URL |
[7] | BENGIO Y, BOULANGER-LEWANDOWSKI N, PASCANU R. Advances in optimizing recurrent networks[C]// Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, May 26-31, 2013. Piscataway: IEEE, 2013: 8624-8628. |
[8] | BRUNA J, ZAREMBA W, SZLAM A, et al. Spectral networks and locally connected networks on graphs[J]. arXiv:1312.6203, 2013 |
[9] | DEFFERRARD M, BRESSON X, VANDERGHEYNST P. Convolutional neural networks on graphs with fast localized spectral filtering[C]// Proceedings of the Annual Conference on Neural Information Processing Systems, Barcelona, Dec 5-10, 2016. Red Hook: Curran Associates, 2016: 3844-3852. |
[10] | KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[J]. arXiv:1609.02907, 2016. |
[11] | HAMILTON W L, YING Z T, LESKOVEC J. Inductive representation learning on large graphs[C]// Proceedings of the Annual Conference on Neural Information Processing Systems, Long Beach, Dec 4-9, 2017. Red Hook: Curran Associates, 2017: 1024-1034. |
[12] | VELIČKOVIĆ P, CUCURULL G, CASANOVA A, et al. Graph attention networks[J]. arXiv:1710.10903, 2017. |
[13] | RHEE S, SEO S, KIM S. Hybrid approach of relation network and localized graph convolutional filtering for breast cancer subtype classification[J]. arXiv:1711.05859, 2017. |
[14] | ZHANG M H, CUI Z C, NEUMANN M, et al. An end-to-end deep learning architecture for graph classification[C]// Proceedings of the 32nd AAAI Conference on Artificial Intelligence. Menlo Park: AAAI, 2018: 4438-4445. |
[15] | YING Z, YOU J, MORRIS C, et al. Hierarchical graph repre-sentation learning with differentiable pooling[C]// Proceedings of the 32nd AAAI Conference on Artificial Intelligence, the 30th Innovative Applications of Artificial Intelligence, and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence, New Orleans, Feb 2-7, 2018. Menlo Park: AAAI, 2018: 4800-4810. |
[16] | LEE J, LEE I, KANG J. Self-attention graph pooling[J]. arXiv:1904.08082, 2019. |
[17] | GILMER J, SCHOENHOLZ S S, RILEY P F, et al. Neural message passing for quantum chemistry[C]// Proceedings of the 34th International Conference on Machine Learning, Sydney, Aug 6-11, 2017: 1263-1272. |
[18] | ZHOU J, CUI G Q, ZHANG Z Y, et al. Graph neural networks: a review of methods and applications[J]. arXiv:1812.08434, 2018. |
[19] | WU Z H, PAN S R, CHEN F W, et al. A comprehensive survey on graph neural networks[J]. arXiv:1901.00596, 2019. |
[20] | XU K, HU W H, LESKOVEC J, et al. How powerful are graph neural networks[J]. arXiv:1810.00826, 2018. |
[21] | VINYALS O, BENGIO S, KUDLUR M. Order matters: sequence to sequence for sets[J]. arXiv:1511.06391, 2015. |
[22] | KIPF T N, WELLING M. Variational graph auto-encoders[J]. arXiv:1611.07308, 2016. |
[23] | PAN S R, HU R Q, LONG G D, et al. Adversarially regular-ized graph autoencoder for graph embedding[C]// Proceedings of the 27th International Joint Conference on Artificial Intelligence, Stockholm, Jul 13-19, 2018: 2609-2615. |
[24] | OORD A, DIELEMAN S, ZEN H, et al. WaveNet: a generative model for raw audio[J]. arXiv:1609.03499, 2016. |
[25] | RIESEN K, BUNKE H. IAM graph database repository for graph based pattern recognition and machine learning[C]// LNCS 5342: Proceedings of the Joint IAPR International Workshops on Statistical Techniques in Pattern Recognition and Structural and Syntactic Pattern Recognition, Orlando, Dec 4-6, 2008. Berlin, Heidelberg: Springer, 2008: 287-297. |
[26] | ORSINI F, FRASCONI P, DE RAEDT L. Graph invariant kernels[C]// Proceedings of the 24th International Joint Conference on Artificial Intelligence, Buenos Aires, Jul 25-31, 2015. Menlo Park: AAAI, 2015: 3756-3762. |
[27] | COSTA F, DE GRAVE K. Fast neighborhood subgraph pairwise distance kernel[C]// Proceedings of the 27th International Conference on Machine Learning, Haifa, Jun 21-24, 2010. Madison: Omnipress, 2010: 255-262. |
[28] |
WALE N, WATSON I A, KARYPIS G. Comparison of descriptor spaces for chemical compound retrieval and classification[J]. Knowledge and Information Systems, 2008, 14(3):347-375.
DOI URL |
[29] |
DOBSON P D, DOIG A J. Distinguishing enzyme structures from non-enzymes without alignments[J]. Journal of Molecular Biology, 2003, 330(4):771-783.
DOI URL |
[30] | ShCHUR O, MUMME M, BOJCHEVSKI A, et al. Pitfalls of graph neural network evaluation[J]. arXiv:1811.05868, 2018. |
[31] | XU K, LI C T, TIAN Y L, et al. Representation learning on graphs with jumping knowledge networks[J]. arXiv:1806.03536, 2018 |
[32] | PASZKE A, GROSS S, MASSA F, et al. Pytorch: an imperative style, high-performance deep learning library[C]// Proceedings of the Advances in Neural Information Processing Systems, 2019: 8026-8037. |
[33] | WANG M J, YU L F, ZHENG D, et al. Deep graph library: towards efficient and scalable deep learning on graphs[J]. arXiv:1909.01315, 2019. |
[1] | YANG Zhiqiao, ZHANG Ying, WANG Xinjie, ZHANG Dongbo, WANG Yu. Application Research of Improved U-shaped Network in Detection of Retinopathy [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(8): 1877-1884. |
[2] | XIA Hongbin, XIAO Yifei, LIU Yuan. Long Text Generation Adversarial Network Model with Self-Attention Mechanism [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(7): 1603-1610. |
[3] | LI Yunhuan, WEN Jiwei, PENG Li. High Frame Rate Light-Weight Siamese Network Target Tracking [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(6): 1405-1416. |
[4] | ZHANG Yancao, ZHAO Yuhai, SHI Lan. Multi-feature Based Link Prediction Algorithm Fusing Graph Attention [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(5): 1096-1106. |
[5] | ZHAO Pengfei, XIE Linbo, PENG Li. Deep Small Object Detection Algorithm Integrating Attention Mechanism [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(4): 927-937. |
[6] | LU Zhongda, ZHANG Chunda, ZHANG Jiaqi, WANG Zifei, XU Junhua. Identification of Apple Leaf Disease Based on Dual Branch Network [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(4): 917-926. |
[7] | HUANG Siyuan, ZHAO Yuhai, LIANG Yiming. Code Search Combining Graph Embedding and Attention Mechanism [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(4): 844-854. |
[8] | WANG Yanni, YU Lixian. SSD Object Detection Algorithm with Effective Fusion of Attention and Multi-scale [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(2): 438-447. |
[9] | CAI Mingxin, SUN Jing, WANG Bin. Multi-aspect Semantic Trajectory Similarity Computation Model [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(9): 1632-1640. |
[10] | CHEN Junfen, ZHANG Ming, ZHAO Jiacheng, XIE Bojun, LI Yan. Deep Clustering Algorithm Based on Denoising and Self-Attention [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(9): 1717-1727. |
[11] | ZHANG Han, JIA Tianyuan, LUO Fang, ZHANG Sheng, WU Xia. Study on Predicting Psychological Traits of Online Text by BERT [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(8): 1459-1468. |
[12] | CHEN Jiannan, DU Junping, XUE Zhe, KOU Feifei. Accurate Portrait of Big Data of Financial Events Based on Multiple Attention Mechanism [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(7): 1237-1244. |
[13] | FANG Junting, TAN Xiaoyang. Defect Detection of Metal Surface Based on Attention Cascade R-CNN [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(7): 1245-1254. |
[14] | WANG Xiaodong, ZHAO Yining, XIAO Haili, WANG Xiaoning, CHI Xuebin. User Behavior Analysis with RNN and Graph Neural Networks [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(5): 838-847. |
[15] | WANG Runzheng, GAO Jian, TONG Xin, YANG Mengqi. Research on Malicious Code Family Classification Combining Attention Mechanism [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(5): 881-892. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/