Journal of Frontiers of Computer Science and Technology ›› 2022, Vol. 16 ›› Issue (8): 1877-1884.DOI: 10.3778/j.issn.1673-9418.2012011
• Graphics and Image • Previous Articles Next Articles
YANG Zhiqiao1, ZHANG Ying1,+(), WANG Xinjie1, ZHANG Dongbo1,2, WANG Yu1
Received:
2020-12-03
Revised:
2021-01-28
Online:
2022-08-01
Published:
2021-02-05
About author:
YANG Zhiqiao, born in 1996, M.S. candidate. His research interest is medical image processing.Supported by:
杨知桥1, 张莹1,+(), 王新杰1, 张东波1,2, 王玉1
通讯作者:
+E-mail: zhangying@xtu.edu.cn。作者简介:
杨知桥(1996—),男,湖南桃源人,硕士研究生,主要研究方向为医学图像处理。基金资助:
CLC Number:
YANG Zhiqiao, ZHANG Ying, WANG Xinjie, ZHANG Dongbo, WANG Yu. Application Research of Improved U-shaped Network in Detection of Retinopathy[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(8): 1877-1884.
杨知桥, 张莹, 王新杰, 张东波, 王玉. 改进U型网络在视网膜病变检测中的应用研究[J]. 计算机科学与探索, 2022, 16(8): 1877-1884.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2012011
Method | AC | SE | SP | AUC |
---|---|---|---|---|
U-Net[ | 0.953 1 | 0.753 7 | 0.970 4 | 0.960 1 |
ResU-Net[ | 0.952 7 | 0.756 9 | 0.981 6 | 0.974 3 |
Dense U-Net[ | 0.953 2 | 0.797 7 | 0.975 9 | 0.973 5 |
CE-Net(Backbone)[ | 0.954 5 | 0.830 9 | 0.979 8 | 0.977 9 |
Backbone+New DAC | 0.955 1 | 0.832 4 | 0.980 1 | 0.978 2 |
Backbone+New RMP | 0.956 3 | 0.833 2 | 0.980 6 | 0.978 7 |
Backbone+New DAC+ New RMP | 0.957 2 | 0.834 6 | 0.981 0 | 0.979 1 |
Backbone+HAM | 0.958 5 | 0.838 9 | 0.981 9 | 0.980 5 |
Proposed method | 0.961 3 | 0.845 5 | 0.984 3 | 0.982 7 |
Table 1 Comparison of segmentation performance of different methods (fundus retinal blood vessels)
Method | AC | SE | SP | AUC |
---|---|---|---|---|
U-Net[ | 0.953 1 | 0.753 7 | 0.970 4 | 0.960 1 |
ResU-Net[ | 0.952 7 | 0.756 9 | 0.981 6 | 0.974 3 |
Dense U-Net[ | 0.953 2 | 0.797 7 | 0.975 9 | 0.973 5 |
CE-Net(Backbone)[ | 0.954 5 | 0.830 9 | 0.979 8 | 0.977 9 |
Backbone+New DAC | 0.955 1 | 0.832 4 | 0.980 1 | 0.978 2 |
Backbone+New RMP | 0.956 3 | 0.833 2 | 0.980 6 | 0.978 7 |
Backbone+New DAC+ New RMP | 0.957 2 | 0.834 6 | 0.981 0 | 0.979 1 |
Backbone+HAM | 0.958 5 | 0.838 9 | 0.981 9 | 0.980 5 |
Proposed method | 0.961 3 | 0.845 5 | 0.984 3 | 0.982 7 |
Method | AC | SE | SP | AUC |
---|---|---|---|---|
U-Net[ | 0.908 9 | 0.744 7 | 0.932 5 | 0.918 7 |
ResU-Net[ | 0.9177 | 0.812 6 | 0.939 8 | 0.920 2 |
Dense U-Net[ | 0.916 3 | 0.797 5 | 0.946 5 | 0.924 3 |
CE-Net(Backbone)[ | 0.917 5 | 0.826 5 | 0.944 6 | 0.929 8 |
Backbone+New DAC | 0.917 9 | 0.827 5 | 0.944 9 | 0.930 1 |
Backbone+New RMP | 0.918 4 | 0.828 6 | 0.945 3 | 0.930 3 |
Backbone+New DAC+ New RMP | 0.919 3 | 0.829 1 | 0.945 5 | 0.930 7 |
Backbone+HAM | 0.921 2 | 0.830 7 | 0.945 9 | 0.931 8 |
Proposed method | 0.923 7 | 0.833 2 | 0.947 3 | 0.933 5 |
Table 2 Comparison of segmentation performance of different methods (exudate)
Method | AC | SE | SP | AUC |
---|---|---|---|---|
U-Net[ | 0.908 9 | 0.744 7 | 0.932 5 | 0.918 7 |
ResU-Net[ | 0.9177 | 0.812 6 | 0.939 8 | 0.920 2 |
Dense U-Net[ | 0.916 3 | 0.797 5 | 0.946 5 | 0.924 3 |
CE-Net(Backbone)[ | 0.917 5 | 0.826 5 | 0.944 6 | 0.929 8 |
Backbone+New DAC | 0.917 9 | 0.827 5 | 0.944 9 | 0.930 1 |
Backbone+New RMP | 0.918 4 | 0.828 6 | 0.945 3 | 0.930 3 |
Backbone+New DAC+ New RMP | 0.919 3 | 0.829 1 | 0.945 5 | 0.930 7 |
Backbone+HAM | 0.921 2 | 0.830 7 | 0.945 9 | 0.931 8 |
Proposed method | 0.923 7 | 0.833 2 | 0.947 3 | 0.933 5 |
Method | AC | SE | SP | AUC |
---|---|---|---|---|
U-Net[ | 0.913 4 | 0.746 5 | 0.933 2 | 0.932 5 |
ResU-Net[ | 0.919 8 | 0.820 7 | 0.940 7 | 0.945 5 |
Dense U-Net[ | 0.916 8 | 0.794 4 | 0.944 3 | 0.943 9 |
CE-Net(Backbone)[ | 0.922 3 | 0.834 9 | 0.948 5 | 0.945 3 |
Backbone+New DAC | 0.923 3 | 0.835 5 | 0.948 9 | 0.945 8 |
Backbone+New RMP | 0.923 9 | 0.835 9 | 0.949 1 | 0.946 1 |
Backbone+New DAC+New RMP | 0.924 6 | 0.836 5 | 0.949 6 | 0.946 8 |
Backbone+HAM | 0.927 3 | 0.838 1 | 0.952 2 | 0.948 1 |
Proposed method | 0.931 0 | 0.839 8 | 0.955 4 | 0.949 6 |
Table 3 Comparison of segmentation performance of different methods (bleeding point)
Method | AC | SE | SP | AUC |
---|---|---|---|---|
U-Net[ | 0.913 4 | 0.746 5 | 0.933 2 | 0.932 5 |
ResU-Net[ | 0.919 8 | 0.820 7 | 0.940 7 | 0.945 5 |
Dense U-Net[ | 0.916 8 | 0.794 4 | 0.944 3 | 0.943 9 |
CE-Net(Backbone)[ | 0.922 3 | 0.834 9 | 0.948 5 | 0.945 3 |
Backbone+New DAC | 0.923 3 | 0.835 5 | 0.948 9 | 0.945 8 |
Backbone+New RMP | 0.923 9 | 0.835 9 | 0.949 1 | 0.946 1 |
Backbone+New DAC+New RMP | 0.924 6 | 0.836 5 | 0.949 6 | 0.946 8 |
Backbone+HAM | 0.927 3 | 0.838 1 | 0.952 2 | 0.948 1 |
Proposed method | 0.931 0 | 0.839 8 | 0.955 4 | 0.949 6 |
[1] | CAVAN D, MAKAROFF L, DA ROCHA FERNANDES J, et al. The diabetic retinopathy barometer study: global pers-pectives on access to and experiences of diabetic retinopa-thy screening and treatment[J]. Diabetes Research and Cli-nical Practice, 2017, 129: 16-24. |
[2] | ORLANDO J I, PROKOFYEVA E, BLASCHKO M B. A discriminatively trained fully connected conditional random field model for blood vessel segmentation in fundus images[J]. IEEE Transactions on Biomedical Engineering, 2016, 64(1): 16-27. |
[3] | MURUGESWARI S, SUKANESH R. Investigations of seve-rity level measurements for diabetic macular oedema using machine learning algorithms[J]. Irish Journal of Medical Science, 2017, 186(4): 929-938. |
[4] | QUELLEC G, CHARRIÈRE K, BOUDI Y, et al. Deep image mining for diabetic retinopathy screening[J]. Medical Image Analysis, 2017, 39: 178-193. |
[5] | RONNEBERGER O, FISCHER P, BROX T, et al. U-Net:convolutional networks for biomedical image segmentation[C]// LNCS 9351: Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Oct 5-9, 2015. Cham: Sprin-ger, 2015: 234-241. |
[6] | 钟思华, 郭兴明, 郑伊能. 改进U-Net网络的肺结节分割方法[J]. 计算机工程与应用, 2020, 56(17): 203-209. |
ZHONG S H, GUO X M, ZHENG Y N. Improved U-Net network for lung nodule segmentation[J]. Computer Engi-neering and Applications, 2020, 56(17): 203-209. | |
[7] | 钱宝鑫, 肖志勇, 宋威. 改进的卷积神经网络在肺部图像上的分割应用[J]. 计算机科学与探索, 2020, 14(8): 1358-1367. |
QIAN B X, XIAO Z Y, SONG W. Application of improved convolutional neural network in lung image segmentation[J]. Journal of Frontiers of Computer Science and Techno-logy, 2020, 14(8): 1358-1367. | |
[8] | GU Z, CHENG J, FU H, et al. CE-Net: context encoder net-work for 2D medical image segmentation[J]. IEEE Transac-tions on Medical Imaging, 2019, 38(10): 2281-2292. |
[9] | PANG S C, DU A A, YU Z M, et al. Correlation matters:multi-scale fine-grained contextual information extraction for hepatic tumor segmentation[C]// LNCS 12084: Procee-dings of the 24th Pacific-Asia Conference on Knowledge Discovery and Data Mining, Singapore, May 11-14, 2020. Cham: Springer, 2020: 462-474. |
[10] | WANG L, LIANG D X, YIN X L, et al. Coronary artery segmentation in angiographic videos utilizing spatial-tem-poral information[J]. BMC Medical Imaging, 2020, 20(1): 110. |
[11] | WANG P Q, CHEN P F, YUAN Y, et al. Understanding convolution for semantic segmentation[C]// Proceedings of the 2018 IEEE Winter Conference on Applications of Com-puter Vision, Lake Tahoe, Mar 12-15, 2018. Washington: IEEE Computer Society, 2018: 1451-1460. |
[12] | ZHAO H S, SHI J P, QI X J, et al. Pyramid scene parsing net-work[C]// Proceedings of the 2017 IEEE Conference on Com-puter Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 6230-6239. |
[13] | HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Washington: IEEE Computer Society, 2018: 7132-7141. |
[14] | WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]// LNCS 11211: Proceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Cham: Springer, 2018: 3-19. |
[15] | CHEN L C, PAPANDREOU G, KOKKINOS I, et al. Deep-lab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 40(4): 834-848. |
[16] | STAAL J, ABRÀMOFF M D, NIEMEIJER M, et al. Ridge-based vessel segmentation in color images of the retina[J]. IEEE Transactions on Medical Imaging, 2004, 23(4): 501-509. |
[17] | LIN J W, LIAO X W, YU L, et al. Res-UNet based optic disk segmentation in retinal image[J]. Journal of Compu-ters, 2020, 31(3): 183-194. |
[18] | WU X, ZHAO L. Study on iris segmentation algorithm based on dense U-Net[J]. IEEE Access, 2019, 7: 123959-123968. |
[19] | KAUPPI T, KALESNYKIENE V, KAMARAINEN J K, et al. DIARETDB 1 diabetic retinopathy database and evaluation protocol[C]// Proceedings of the British Machine Vision Conference 2007, University of Warwick, Sep 10-13, 2007. Durham: BMVA Press, 2007: 1-10. |
[1] | LYU Xiaoqi, JI Ke, CHEN Zhenxiang, SUN Runyuan, MA Kun, WU Jun, LI Yidong. Expert Recommendation Algorithm Combining Attention and Recurrent Neural Network [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(9): 2068-2077. |
[2] | LI Zhenqi, WANG Jing, JIA Ziyu, LIN Youfang. Attention-Based Multi-dimensional Feature Graph Convolutional Network for Motor Imagery Classification [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(9): 2050-2060. |
[3] | XIA Hongbin, XIAO Yifei, LIU Yuan. Long Text Generation Adversarial Network Model with Self-Attention Mechanism [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(7): 1603-1610. |
[4] | LI Yunhuan, WEN Jiwei, PENG Li. High Frame Rate Light-Weight Siamese Network Target Tracking [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(6): 1405-1416. |
[5] | ZHANG Yancao, ZHAO Yuhai, SHI Lan. Multi-feature Based Link Prediction Algorithm Fusing Graph Attention [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(5): 1096-1106. |
[6] | ZHAO Pengfei, XIE Linbo, PENG Li. Deep Small Object Detection Algorithm Integrating Attention Mechanism [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(4): 927-937. |
[7] | LU Zhongda, ZHANG Chunda, ZHANG Jiaqi, WANG Zifei, XU Junhua. Identification of Apple Leaf Disease Based on Dual Branch Network [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(4): 917-926. |
[8] | HUANG Siyuan, ZHAO Yuhai, LIANG Yiming. Code Search Combining Graph Embedding and Attention Mechanism [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(4): 844-854. |
[9] | WANG Yanni, YU Lixian. SSD Object Detection Algorithm with Effective Fusion of Attention and Multi-scale [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(2): 438-447. |
[10] | JIANG Guangfeng, HU Pengcheng, YE Hua, YANG Yanlan. Isomorphic Graph Classification Model Based on Reconstruction Error [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(1): 185-193. |
[11] | CAI Mingxin, SUN Jing, WANG Bin. Multi-aspect Semantic Trajectory Similarity Computation Model [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(9): 1632-1640. |
[12] | CHEN Junfen, ZHANG Ming, ZHAO Jiacheng, XIE Bojun, LI Yan. Deep Clustering Algorithm Based on Denoising and Self-Attention [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(9): 1717-1727. |
[13] | ZHANG Han, JIA Tianyuan, LUO Fang, ZHANG Sheng, WU Xia. Study on Predicting Psychological Traits of Online Text by BERT [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(8): 1459-1468. |
[14] | CHEN Jiannan, DU Junping, XUE Zhe, KOU Feifei. Accurate Portrait of Big Data of Financial Events Based on Multiple Attention Mechanism [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(7): 1237-1244. |
[15] | FANG Junting, TAN Xiaoyang. Defect Detection of Metal Surface Based on Attention Cascade R-CNN [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(7): 1245-1254. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/