Journal of Frontiers of Computer Science and Technology ›› 2022, Vol. 16 ›› Issue (9): 2068-2077.DOI: 10.3778/j.issn.1673-9418.2102067
• Artificial Intelligence • Previous Articles Next Articles
LYU Xiaoqi1,2, JI Ke1,2,+(), CHEN Zhenxiang1,2, SUN Runyuan1,2, MA Kun1,2, WU Jun3, LI Yidong3
Received:
2021-01-20
Revised:
2021-03-18
Online:
2022-09-01
Published:
2021-03-26
About author:
LYU Xiaoqi, born in 1997, M.S. candidate. Her research interest is natural language processing.Supported by:
吕晓琦1,2, 纪科1,2,+(), 陈贞翔1,2, 孙润元1,2, 马坤1,2, 邬俊3, 李浥东3
通讯作者:
+ E-mail: ise_jik@ujn.edu.cn作者简介:
吕晓琦(1997—),女,山东滨州人,硕士研究生,主要研究方向为自然语言处理。基金资助:
CLC Number:
LYU Xiaoqi, JI Ke, CHEN Zhenxiang, SUN Runyuan, MA Kun, WU Jun, LI Yidong. Expert Recommendation Algorithm Combining Attention and Recurrent Neural Network[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(9): 2068-2077.
吕晓琦, 纪科, 陈贞翔, 孙润元, 马坤, 邬俊, 李浥东. 结合注意力与循环神经网络的专家推荐算法[J]. 计算机科学与探索, 2022, 16(9): 2068-2077.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2102067
名称 | 数量 |
---|---|
用户描述记录 | 1 931 654 |
问题描述记录 | 1 829 900 |
问题邀请记录 | 500 000 |
主题标签 | 100 000 |
Table 1 Basic statistics of dataset
名称 | 数量 |
---|---|
用户描述记录 | 1 931 654 |
问题描述记录 | 1 829 900 |
问题邀请记录 | 500 000 |
主题标签 | 100 000 |
算法名称 | AUC | ACC | Logloss | ||||||
---|---|---|---|---|---|---|---|---|---|
30% | 70% | 100% | 30% | 70% | 100% | 30% | 70% | 100% | |
DeepFM | 0.522 3 | 0.530 1 | 0.532 3 | 0.724 9 | 0.731 8 | 0.741 0 | 0.466 6 | 0.466 8 | 0.468 3 |
XDeepFM | 0.574 1 | 0.576 0 | 0.584 7 | 0.754 0 | 0.766 0 | 0.788 6 | 0.462 9 | 0.461 8 | 0.460 7 |
CNN-DSSM | 0.584 8 | 0.605 9 | 0.613 3 | 0.787 5 | 0.800 5 | 0.801 8 | 0.457 5 | 0.449 2 | 0.449 0 |
DSIERM-OS | 0.628 8 | 0.638 5 | 0.645 6 | 0.801 2 | 0.809 0 | 0.811 2 | 0.451 0 | 0.439 1 | 0.437 1 |
DSIERM | 0.630 2 | 0.647 6 | 0.649 1 | 0.809 6 | 0.810 2 | 0.811 6 | 0.439 1 | 0.431 7 | 0.431 0 |
Table 2 Comparison of experimental results of all algorithms on different proportions of training data
算法名称 | AUC | ACC | Logloss | ||||||
---|---|---|---|---|---|---|---|---|---|
30% | 70% | 100% | 30% | 70% | 100% | 30% | 70% | 100% | |
DeepFM | 0.522 3 | 0.530 1 | 0.532 3 | 0.724 9 | 0.731 8 | 0.741 0 | 0.466 6 | 0.466 8 | 0.468 3 |
XDeepFM | 0.574 1 | 0.576 0 | 0.584 7 | 0.754 0 | 0.766 0 | 0.788 6 | 0.462 9 | 0.461 8 | 0.460 7 |
CNN-DSSM | 0.584 8 | 0.605 9 | 0.613 3 | 0.787 5 | 0.800 5 | 0.801 8 | 0.457 5 | 0.449 2 | 0.449 0 |
DSIERM-OS | 0.628 8 | 0.638 5 | 0.645 6 | 0.801 2 | 0.809 0 | 0.811 2 | 0.451 0 | 0.439 1 | 0.437 1 |
DSIERM | 0.630 2 | 0.647 6 | 0.649 1 | 0.809 6 | 0.810 2 | 0.811 6 | 0.439 1 | 0.431 7 | 0.431 0 |
[1] |
WANG X, HUANG C, YAO L, et al. A survey on expert recommendation in community question answering[J]. Journal of Computer Science and Technology, 2018, 33(4): 625-653.
DOI URL |
[2] |
NIKZAD-KHASMAKHI N, BALAFAR M A, FEIZI-DERA-KHSHI M R. The state-of-the-art in expert recommendation systems[J]. Engineering Applications of Artificial Intelligence, 2019, 82: 126-147.
DOI URL |
[3] | LIU X Y, CROFT W B, KOLL M B. Finding experts in community-based question-answering services[C]// Procee-dings of the 2005 ACM CIKM International Conference on Information and Knowledge Management, Bremen, Oct 31-Nov 5, 2005. New York: ACM, 2005: 315-316. |
[4] | LIU M R, LIU Y C, YANG Q. Predicting best answerers for new questions in community question answering[C]// LNCS 6184: Proceedings of the 11th International Conference on Web-Age Information Management, Jiuzhaigou, Jul 15-17, 2010. Berlin, Heidelberg: Springer, 2010: 127-138. |
[5] | SHEN Y K, RONG W G, SUN Z W, et al. Question/Answer matching for CQA system via combining lexical and seque-ntial information[C]// Proceedings of the 29th AAAI Confe-rence on Artificial Intelligence, Austin, Jan 25-30, 2015. Menlo Park: AAAI, 2015: 275-281. |
[6] | YANG L, QIU M H, GOTTIPATI S, et al. CQArank: jointly model topics and expertise in community question answe-ring[C]// Proceedings of the 22nd ACM International Confe-rence on Information and Knowledge Management, San Fran-cisco, Oct 27-Nov 1, 2013. New York: ACM, 2013: 99-108. |
[7] | GUO H, TANG R, YE Y, et al. DeepFM: a factorization-machine based neural network for CTR prediction[C]// Procee-dings of the 26th International Joint Conference on Artifi-cial Intelligence. New York: ACM, 2017: 1725-1731. |
[8] | LIAN J, ZHOU X, ZHANG F, et al. XDeepFM: combining explicit and implicit feature interactions for recommender systems[C]// Proceedings of the 24th ACM SIGKDD Interna-tional Conference on Knowledge Discovery and Data Mining. New York: ACM, 2018: 1754-1763. |
[9] | SHEN Y, HE X, GAO J, et al. A latent semantic model with convolutional-pooling structure for information retrieval[C]// Proceedings of the 23rd ACM International Conference on Information and Knowledge Management. New York: ACM, 2014: 101-110. |
[10] | YIN H, ZHOU X, CUI B, et al. Adapting to user interest drift for POI recommendation[J]. IEEE Transactions on Know-ledge and Data Engineering, 2016, 28(10): 2566-2581. |
[11] | ZHANG S, YAO L, SUN A, et al. Deep learning based reco-mmender system: a survey and new perspectives[J]. ACM Computing Surveys, 2019, 52(1): 1-38. |
[12] | DAS D, SAHOO L, DATTA S. A survey on recommen-dation system[J]. International Journal of Computer Appli-cations, 2017, 160(7): 6-10. |
[13] | WU H, WANG Y J, CHENG X. Incremental probabilistic latent semantic analysis for automatic question recommen-dation[C]// Proceedings of the 2008 ACM Conference on Recommender Systems, Lausanne, Oct 23-25, 2008. New York: ACM, 2008: 99-106. |
[14] | PAL A, KONSTAN J A. Expert identification in community question answering: exploring question selection bias[C]// Proceedings of the 19th ACM Conference on Information and Knowledge Management, Toronto, Oct 26-30, 2010. New York: ACM, 2010: 1505-1508. |
[15] | HUANG P S, HE X D, GAO J F, et al. Learning deep struc-tured semantic models for web search using clickthrough data[C]// Proceedings of the 22nd ACM International Confe-rence on Information and Knowledge Management, San Fran-cisco, Oct 27-Nov 1, 2013. New York: ACM, 2013: 2333-2338. |
[16] | HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]// Proceedings of the 2016 IEEE Confe-rence on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer Society, 2016: 770-778. |
[17] |
KE H, CHEN D, LI X, et al. Towards brain big data classifi-cation: epileptic EEG identification with a lightweight VGGNet on global MIC[J]. IEEE Access, 2018, 6: 14722-14733.
DOI URL |
[18] |
GUO B, ZHANG C, LIU J, et al. Improving text classifi-cation with weighted word embeddings via a multi-channel TextCNN model[J]. Neurocomputing, 2019, 363: 366-374.
DOI URL |
[19] | KARIMI E, MAJIDI B, MANZURI M T. Relevant ques-tion answering in community based networks using deep LSTM neural networks[C]// Proceedings of the 2019 7th Ira-nian Joint Congress on Fuzzy and Intelligent Systems. Pisca-taway: IEEE, 2019: 1-5. |
[20] |
YANG M, TU W, QU Q, et al. Advanced community question answering by leveraging external knowledge and multitask learning[J]. Knowledge-Based Systems, 2019, 171: 106-119.
DOI URL |
[21] | DENG Y, LAM W, XIE Y, et al. Joint learning of answer selection and answer summary generation in community ques-tion answering[C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence. Menlo Park: AAAI, 2020: 7651-7658. |
[22] |
LIU J, YANG Y, LV S, et al. Attention-based BiGRU-CNN for Chinese question classification[J]. Journal of Ambient Inte-lligence and Humanized Computing, 2019. DOI: 10.1007/s12652-019-01344-9.
DOI |
[23] |
ZHANG Y, LU W, OU W, et al. Chinese medical question ans-wer selection via hybrid models based on CNN and GRU[J]. Multimedia Tools and Applications, 2020, 79(21): 14751-14776.
DOI URL |
[24] |
YUAN S, ZHANG Y, TANG J, et al. Expert finding in commu-nity question answering: a review[J]. Artificial Intelligence Review, 2020, 53(2): 843-874.
DOI URL |
[25] | FU J, LI Y, ZHANG Q, et al. Recurrent memory reasoning network for expert finding in community question answering[C]// Proceedings of the 13th International Conference on Web Search and Data Mining. New York: ACM, 2020: 187-195. |
[1] | LI Zhenqi, WANG Jing, JIA Ziyu, LIN Youfang. Attention-Based Multi-dimensional Feature Graph Convolutional Network for Motor Imagery Classification [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(9): 2050-2060. |
[2] | ZHANG Xiangping, LIU Jianxun. Overview of Deep Learning-Based Code Representation and Its Applications [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(9): 2011-2029. |
[3] | LI Dongmei, LUO Sisi, ZHANG Xiaoping, XU Fu. Review on Named Entity Recognition [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(9): 1954-1968. |
[4] | REN Ning, FU Yan, WU Yanxia, LIANG Pengju, HAN Xi. Review of Research on Imbalance Problem in Deep Learning Applied to Object Detection [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(9): 1933-1953. |
[5] | YANG Caidong, LI Chengyang, LI Zhongbo, XIE Yongqiang, SUN Fangwei, QI Jin. Review of Image Super-resolution Reconstruction Algorithms Based on Deep Learning [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(9): 1990-2010. |
[6] | ZENG Fanzhi, XU Luqian, ZHOU Yan, ZHOU Yuexia, LIAO Junwei. Review of Knowledge Tracing Model for Intelligent Education [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(8): 1742-1763. |
[7] | YANG Zhiqiao, ZHANG Ying, WANG Xinjie, ZHANG Dongbo, WANG Yu. Application Research of Improved U-shaped Network in Detection of Retinopathy [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(8): 1877-1884. |
[8] | AN Fengping, LI Xiaowei, CAO Xiang. Medical Image Classification Algorithm Based on Weight Initialization-Sliding Window CNN [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(8): 1885-1897. |
[9] | LIU Yi, LI Mengmeng, ZHENG Qibin, QIN Wei, REN Xiaoguang. Survey on Video Object Tracking Algorithms [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(7): 1504-1515. |
[10] | ZHAO Xiaoming, YANG Yijiao, ZHANG Shiqing. Survey of Deep Learning Based Multimodal Emotion Recognition [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(7): 1479-1503. |
[11] | XIA Hongbin, XIAO Yifei, LIU Yuan. Long Text Generation Adversarial Network Model with Self-Attention Mechanism [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(7): 1603-1610. |
[12] | LI Yunhuan, WEN Jiwei, PENG Li. High Frame Rate Light-Weight Siamese Network Target Tracking [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(6): 1405-1416. |
[13] | SUN Fangwei, LI Chengyang, XIE Yongqiang, LI Zhongbo, YANG Caidong, QI Jin. Review of Deep Learning Applied to Occluded Object Detection [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(6): 1243-1259. |
[14] | LIU Yafen, ZHENG Yifeng, JIANG Lingyi, LI Guohe, ZHANG Wenjie. Survey on Pseudo-Labeling Methods in Deep Semi-supervised Learning [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(6): 1279-1290. |
[15] | ZHANG Yancao, ZHAO Yuhai, SHI Lan. Multi-feature Based Link Prediction Algorithm Fusing Graph Attention [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(5): 1096-1106. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/