Journal of Frontiers of Computer Science and Technology ›› 2023, Vol. 17 ›› Issue (11): 2557-2579.DOI: 10.3778/j.issn.1673-9418.2303099
• Frontiers·Surveys • Previous Articles Next Articles
LI Jie, QU Zhong
Online:
2023-11-01
Published:
2023-11-01
李杰, 瞿中
LI Jie, QU Zhong. Survey of Application of Deep Learning in Finger Vein Recognition[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(11): 2557-2579.
李杰, 瞿中. 深度学习在手指静脉识别中的应用研究综述[J]. 计算机科学与探索, 2023, 17(11): 2557-2579.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2303099
[1] SHAHEED K, LIU H, YANG G P, et al. A systematic review of finger vein recognition techniques[J]. Information, 2018, 9(9): 213. [2] HSIA C H, LIU C H. New hierarchical finger-vein feature extraction method for iVehicles[J]. IEEE Sensors Journal, 2022, 22(13): 13612-13621. [3] ZHAO P Y, ZHAO S P, CHEN L Y, et al. Exploiting multi-perspective driven hierarchical content-aware network for finger vein verification[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(11): 7938-7950. [4] YANG W, WANG S, HU J, et al. A fingerprint and finger-vein based cancelable multi-biometric system[J]. Pattern Recognition, 2018, 78: 242-251. [5] 谭营, 王军. 手指静脉身份识别技术最新进展[J]. 智能系统学报, 2011, 6(6): 471-482. TAN Y, WANG J. Recent advances in finger vein based biometric techniques[J]. CAAI Transactions on Intelligent Systems, 2011, 6(6): 471-482. [6] HOU B R, ZHANG H J, YAN R Q. Finger-vein biometric recognition: a review[J]. IEEE Transactions on Instrumen-tation and Measurement, 2022, 71: 1-26. [7] LEE E C, LEE H C, KANG R P. Finger vein recognition using minutia-based alignment and local binary pattern-based feature extraction[J]. International Journal of Imaging Systems and Technology, 2009, 19(3): 179-186. [8] LU Y, XIE S J, YOON S, et al. Robust finger vein ROI localization based on flexible segmentation[J]. Sensors, 2013, 13(11): 14339. [9] YANG L, YANG G P, YIN Y L, et al. Sliding window-based region of interest extraction for finger vein images[J]. Sensors, 2013, 13(3): 3799-3815. [10] YANG L, YANG G P, ZHOU L Z, et al. Superpixel based finger vein ROI extraction with sensor interoperability[C]//Proceedings of the 2015 International Conference on Biometrics, Phuket, May 19-22,? 2015. Piscataway: IEEE, 2015: 444-451. [11] VANONI M, TOME P, SHAFEY L E, et al. Cross-database evaluation using an open finger vein sensor[C]//Proceedings of the 2014 IEEE Workshop on Biometric Measurements and Systems for Security and Medical Applications, Rome,Oct 17, 2014. Piscataway: IEEE, 2014: 30-35. [12] LIU Z, SONG S L. An embedded real-time finger-vein recognition system for mobile devices[J]. IEEE Transactions on Consumer Electronics, 2012, 58(2): 522-527. [13] LIU C X. A new finger vein feature extraction algorithm [C]//Proceedings of the 6th International Congress on Image and Signal Processing, Hangzhou, Dec 16-18, 2013. Piscataway: IEEE, 2013: 395-399. [14] QIU S R, LIU Y Q, ZHOU Y J, et al. Finger-vein recognition based on dual-sliding window localization and pseudo-elliptical transformer[J]. Expert Systems with Applications, 2016, 64: 618-632. [15] KAUBA C, PICIUCCO E, MAIORANA E, et al. Advanced variants of feature level fusion for finger vein recognition[C]//Proceedings of the 2016 International Conference of the Biometrics Special Interest Group, Darmstadt, Sep 21-23, 2016. Piscataway: IEEE, 2016: 195-206. [16] YANG J F, SHI Y H. Towards finger-vein image restoration and enhancement for finger-vein recognition[J]. Information Sciences, 2014, 268: 33-52. [17] SHIN K Y, PARK Y H, NGUYEN D T, et al. Finger-vein image enhancement using a fuzzy-based fusion method with gabor and retinex filtering[J]. Sensors, 2014, 14(2): 3095-3129. [18] MIURA N, NAGASAKA A, MIYATAKE T. Feature extraction of finger-vein patterns based on repeated line tracking and its application to personal identification[J]. Machine Vision and Applications, 2004, 15(4): 194-203. [19] MIURA N, NAGASAKA A, MIYATAKE T. Extraction of finger-vein patterns using maximum curvature points in image profiles[J]. IEICE Transactions on Information and Systems, 2007, 90(8): 1185-1194. [20] SYARIF M A, ONG T S, TEOH A B J, et al. Enhanced maximum curvature descriptors for finger vein verification[J]. Multimedia Tools and Applications, 2016, 76(5): 6859-6887. [21] CHOI J H, SONGA W, KIMA T, et al. Finger vein extraction using gradient normalization and principal curvature[C]// Image Processing: Machine Vision Applications II, 2009, 7251: 359-367. [22] HUANG B N, DAI Y G, LI R F, et al. Finger-vein authen-tication based on wide line detector and pattern normaliza-tion[C]//Proceedings of the 20th International Conference on Pattern Recognition, Istanbul, Aug 23-26, 2010. Piscataway: IEEE, 2010: 1269-1272. [23] LEE H C, KANG B J, LEE E C, et al. Finger vein recognition using weighted local binary pattern code based on a support vector machine[J]. Journal of Zhejiang University Science C, 2010, 11(7): 514-524. [24] 褚洪佳, 陈光化, 汪凯旋. 双重降维HOG结合SVM的快速手指静脉识别[J]. 红外技术, 2022, 44(3): 262-267. CHU H J, CHEN G H, WANG K X. Fast finger vein recognition based on a dual dimension reduction histogram of oriented gradient and support vector machine[J]. Infrared Technology, 2022, 44(3): 262-267. [25] WU J D, LIU C T. Finger-vein pattern identification using principal component analysis and the neural network technique[J]. Expert Systems with Applications, 2011, 38(5): 5423-5427. [26] YANG L, YANG G P, XI X M, et al. Finger vein code: from indexing to matching[J]. IEEE Transactions on Information Forensics and Security, 2019, 14(5): 1210-1223. [27] LIU F, YIN Y L, YANG G P. Finger vein recognition with superpixel-based features[C]//Proceedings of the 2014 IEEE International Joint Conference on Biometrics, Clearwater, Sep 29-Oct 2, 2014. Piscataway: IEEE, 2014: 1-8. [28] KANG W X, LU Y T, LI D J, et al. From noise to feature: exploiting intensity distribution as a novel soft biometric trait for finger vein recognition[J]. IEEE Transactions on Information Forensics and Security, 2018, 14(4): 858-869. [29] YANG J F, WEI J Z, SHI Y H. Accurate ROI localization and hierarchical hyper-sphere model for finger-vein recognition[J]. Neurocomputing, 2019, 328: 171-181. [30] LU Y, YOON S, WU S Q, et al. Pyramid histogram of double competitive pattern for finger vein recognition[J]. IEEE Access, 2018, 6: 56445-56456. [31] YANG J F, SHI Y H, YANG J L. Personal identification based on finger-vein features[J]. Computers in Human Behavior, 2011, 27(5): 1565-1570. [32] ZHOU L S, YANG G P, YIN Y L, et al. Finger vein recognition based on stable and discriminative superpixels[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2016, 30(6): 1650015. [33] SIKARWAR P, MANMOHAN. Finger vein recognition using local directional pattern[C]//Proceedings of the 2016 Inter-national Conference on Inventive Computation Technologies, Coimbatore, Aug 26-27, 2016. Piscataway: IEEE, 2017: 1-5. [34] HSIA C H. New verification strategy for finger-vein recogni-tion system[J]. IEEE Sensors Journal, 2018, 18(2): 790-797. [35] LEE E C, JUNG H, KIM D. New finger biometric method using near infrared imaging[J]. Sensors, 2011, 11(3): 2319-2333. [36] MCCULLOCH W S, PITTS W. A logical calculus of the ideas immanent in nervous activity[J]. The Bulletin of Mathematical Biophysics, 1943, 5(4): 115-133. [37] HINTON G E, KRIZHEVSKY A, SUTSKEVER I. ImageNet classification with deep convolutional neural networks[C]//Advances in Neural Information Processing Systems 25,Lake Tahoe, Dec 3-6, 2012: 1106-1114. [38] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv:1409.1556, 2014. [39] MIRZA M, XU B, WARDE-FARLEY D, et al. Generative adversarial nets[C]//Advances in Neural Information Process-ing Systems 27, Montreal, Dec 8-13, 2014: 2672-2680. [40] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer Society, 2016: 770-778. [41] RONNEBERGER O, FISCHER P, BROX T. U-Net: con-volutional networks for biomedical image segmentation[C]//LNCS 9351: Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Oct 5-9, 2015. Cham: Springer, 2015: 234-241. [42] HOWARD A G, ZHU M, CHEN B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications[J]. arXiv:1704.04861v1, 2017. [43] ZHANG X Y, ZHOU X Y, LIN M X, et al. ShuffleNet: an extremely efficient convolutional neural network for mobile devices[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-23, 2018. Piscataway: IEEE, 2018: 6848-6856. [44] HUANG G, LIU Z, MAATEN L V D. Densely connected convolutional networks[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 2261-2269. [45] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth [16×16] words: transformers for image recognition at scale[J]. arXiv:2010.11929, 2020. [46] YIN Y M, ZHANG R Y, LIU P F, et al. Artificial neural networks for finger vein recognition: a survey[J]. arXiv:2208.13341, 2022. [47] YIN Y L, LIU L L, SUN X W. SDUMLA-HMT: a multimodal biometric database[C]//LNCS 7098: Proceedings of the 6th Chinese Conference on Biometric Recognition, Beijing, Dec 3-4, 2011. Berlin, Heidelberg: Springer, 2011: 260-268. [48] ASAARI M S M, SUANDI S A, ROSDI B A. Fusion of band limited phase only correlation and width centroid contour distance for finger based biometrics[J]. Expert Systems with Applications, 2014, 41(7): 3367-3382. [49] KUMAR A, ZHOU Y B. Human identification using finger images[J]. IEEE Transactions on Image Processing, 2012, 21(4): 2228-2244. [50] YANG W M, HUANG X L, ZHOU F, et al. Comparative competitive coding for personal identification by using finger vein and finger dorsal texture fusion[J]. Information Sciences, 2014, 268: 20-32. [51] LU Y, XIE S J, YOON S, et al. An available database for the research of finger vein recognition[C]//Proceedings of the 6th International Congress on Image and Signal Process-ing, Hangzhou, Dec 16-18, 2013. Piscataway: IEEE, 2013: 410-415. [52] TON B T, VELDHUIS R N J. A high quality finger vascular pattern dataset collected using a custom designed capturing device[C]//Proceedings of the 2013 International Conference on Biometrics, Madrid, Jun 4-7, 2013. Piscataway: IEEE, 2013: 1-5. [53] TOME P, VANONI M, MARCEL S. On the vulnerability of finger vein recognition to spoofing[C]//Proceedings of the 2014 International Conference of the Biometrics Special Interest Group, Darmstadt, Sep 10-12, 2014. Piscataway: IEEE, 2014: 1-10. [54] KAUBA C, PROMMEGGER B, UHL A. Combined fully contactless finger and hand vein capturing device with a corresponding dataset[J]. Sensors, 2019, 19(22): 5014. [55] TANG S, ZHOU S, KANG W X, et al. Finger vein verification using a Siamese CNN[J]. IET Biometrics, 2019, 8(5): 306-315. [56] OU W F, PO L M, ZHOU C, et al. Fusion loss and inter-class data augmentation for deep finger vein feature learning[J]. Expert Systems with Applications, 2021, 171. [57] HONG H G, LEE M B, PARK K R. Convolutional neural network-based finger-vein recognition using NIR image sensors[J]. Sensors, 2017, 17(6): 1297. [58] DAS R, PICIUCCO E, MAIORANA E, et al. Convolutional neural network for finger-vein-based biometric identification[J]. IEEE Transactions on Information Forensics and Security, 2019, 14(2): 360-373. [59] ZHANG J F, LU Z Y, LI M, et al. GAN-based image augmentation for finger-vein biometric recognition[J]. IEEE Access, 2019, 7: 183118-183132. [60] RADZI S A, KHALIL-HANI M, BAKHTERI R. Finger-vein biometric identification using convolutional neural network[J]. Turkish Journal of Electrical Engineering & Computer Sciences, 2016, 24(3): 1863-1878. [61] KUZU R S, PICIUCCO E, MAIORANA E, et al. On-the-fly finger-vein-based biometric recognition using deep neural networks[J]. IEEE Transactions on Information Forensics and Security, 2020, 15: 2641-2654. [62] YEH J, CHAN H T, HSIA C H. ResNeXt with cutout for finger vein analysis[C]//Proceedings of the 2021 International Symposium on Intelligent Signal Processing and Comm-unication Systems, Taiwan, China, Nov 16-19, 2021. Piscata-way: IEEE, 2021: 1-2. [63] HUANG Z, GUO C G. Robust finger vein recognition based on deep CNN with spatial attention and bias field correction[C]//Proceedings of the 12th International Conference on Advanced Computational Intelligence, Dali, Aug 14-16, 2020. Piscataway: IEEE, 2020: 614-619. [64] LI Y P, LU H M, WANG Y F, et al. ViT-Cap: a novel vision transformer-based capsule network model for finger vein recognition[J]. Applied Sciences, 2022, 12(20): 10364. [65] FANG Y X, WU Q X, KANG W X. A novel finger vein verification system based on two-stream convolutional network learning[J]. Neurocomputing, 2018, 290: 100-107. [66] HUANG H J, LIU S L, ZHENG H, et al. DeepVein: novel finger vein verification methods based on deep convolutional neural networks[C]//Proceedings of the 2017 IEEE International Conference on Identity, Security and Behavior Analysis,New Delhi, Feb 22-24, 2017. Piscataway: IEEE, 2017: 1-8. [67] KIM W, SONG J M, PARK K R. Multimodal biometric recognition based on convolutional neural network by the fusion of finger-vein and finger shape using near-infrared (NIR) camera sensor[J]. Sensors, 2018, 18(7): 2296. [68] SONG J M, KIM W, PARK K R. Finger-vein recognition based on deep DenseNet using composite image[J]. IEEE Access, 2019, 7: 66845-66863. [69] HUANG J D, LUO W J, YANG W L, et al. FVT: finger vein transformer for authentication[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 5011813. [70] HOU B R, YAN R Q. Convolutional autoencoder model for finger-vein verification[J]. IEEE Transactions on Instrumenta-tion and Measurement, 2020, 69(5): 2067-2074. [71] HU H, KANG W X, LU Y T, et al. FV-Net: learning a finger-vein feature representation based on a CNN[C]//Proceedings of the 24th International Conference on Pattern Recognition, Beijing, Aug 20-24, 2018. Washington: IEEE Computer Society, 2018: 3489-3494. [72] ZHAO D D, MA H, YANG Z D, et al. Finger vein recognition based on lightweight CNN combining center loss and dynamic regularization[J]. Infrared Physics and Technology, 2020, 105: 103221. [73] LI J, YANG L K, YE M Q, et al. Finger vein verification on different datasets based on deep learning with triplet loss[J]. Computational and Mathematical Methods in Medicine, 2022: 4868435. [74] HOU B R, YAN R Q. Triplet-classifier GAN for finger-vein verification[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 2505112. [75] WANG G Q, SUN C M, SOWMYA A. Learning a compact vein discrimination model with GANerated samples[J]. IEEE Transactions on Information Forensics and Security, 2020, 15: 635-650. [76] YANG W M, HUI C Q, CHEN Z Q, et al. FV-GAN: finger vein representation using generative adversarial networks[J]. IEEE Transactions on Information Forensics and Security, 2019, 14(9): 2512-2524. [77] SHORTEN C, KHOSHGOFTAAR T M. A survey on image data augmentation for deep learning[J]. Journal of Big Data, 2019, 6(1): 1-48. [78] JALILIAN E, UHL A. Enhanced segmentation-CNN based finger-vein recognition by joint training with automatically generated and manual labels[C]//Proceedings of the 5th Inter-national Conference on Identity, Security, and Behavior Analysis, Hyderabad, Jan 22-24, 2019. Piscataway: IEEE, 2019: 1-8. [79] ZENG J Y, WANG F, DENG J X, et al. Finger vein verification algorithm based on fully convolutional neural network and conditional random field[J]. IEEE Access, 2020, 8: 65402-65419. [80] ZENG J Y, ZHU B Y, HUANG Y J, et al. Real-time segmentation method of lightweight network for finger vein using embedded terminal technique[J]. IEEE Access, 2021, 9: 303-316. [81] SONG Y Z, ZHAO P Y, YANG W M, et al. EIFNet: an explicit and implicit feature fusion network for finger vein verification[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2023, 33(5): 2520-2532. [82] LI X, LIN J Z, PANG Y, et al. Fingertip blood collection point localization research based on infrared finger vein image segmentation[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 1-12. [83] CHEN Z Y, LIU J Z, CAO C W, et al. FV-UPatches: enhancing universality in finger vein recognition[J]. arXiv:2206.01061, 2022. [84] QIN H, EL YACOUBI M A. Deep representation for finger-vein image-quality assessment[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2018, 28(8): 1677-1693. [85] WANG Y, FANG P Y. A finger-vein image quality assessment algorithm combined with improved SMOTE and convolu-tional neural network[C]//Proceedings of the 11th International Conference on Software Engineering and Service Science, Beijing, Oct 16-18, 2020. Piscataway: IEEE, 2020: 1-4. [86] ZENG J Y, CHEN Y, QIN C B. Finger-vein image quality assessment based on light-CNN[C]//Proceedings of the 14th IEEE International Conference on Signal Processing, Beijing, Aug 12-16, 2018. Piscataway: IEEE, 2018: 768-773. [87] TAO Z Y, WANG H T, HU Y L, et al. DGLFV: deep generalized label algorithm for finger-vein recognition[J]. IEEE Access, 2021, 9: 78594-78606. [88] MA N, LI Y P, WANG Y F, et al. Research on ROI extraction algorithm for finger vein recognition based on capsule neural network[C]//Proceedings of the 2021 Inter- national Conference on Frontiers of Electronics, Information and Computation Technologies, Changsha, May 21-23, 2021. New York: ACM, 2021: 1-5. [89] YANG K N, FANG P Y, WU J. Deep learning-based region of interest extraction for finger vein images[J]. IOP Con-ference Series: Materials Science and Engineering, 2020, 782: 032056. [90] REN H Y, SUN L J, GUO J, et al. Finger vein recognition system with template protection based on convolutional neural network[J]. Knowledge-Based Systems, 2021, 227: 107159. [91] LIU Y, LING J, LIU Z S, et al. Finger vein secure biometric template generation based on deep learning[J]. Soft Computing, 2017, 22(7): 2257-2265. [92] SHAHREZA H O, MARCEL S. Towards protecting and enhancing vascular biometric recognition methods via biohashing and deep neural networks[J]. IEEE Transactions on Biometrics, Behavior, and Identity Science, 2021, 3(3): 394-404. [93] GOH Z H, WANG Y D, LENG L, et al. A framework for multimodal biometric authentication systems with template protection[J]. IEEE Access, 2022, 10: 96388-96402. [94] SHAHEED K, MAO A, QURESHI I, et al. Finger-vein presentation attack detection using depthwise separable convolution neural network[J]. Expert Systems with App-lications, 2022, 198: 116786. [95] YANG W L, LUO W, KANG W X, et al. FVRAS-Net: an embedded finger-vein recognition and antispoofing system using a unified CNN[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(11): 8690-8701. [96] SCHUIKI J, LINORTNER M, WIMMER G, et al. Attack detection for finger and palm vein biometrics by fusion of multiple recognition algorithms[J]. IEEE Transactions on Biometrics, Behavior, and Identity Science, 2022, 4(4): 544-555. [97] 韩晶晶, 刘江越, 公维军, 等. 面向移动端的目标检测优化研究[J]. 计算机工程与应用, 2022, 58(24): 12-28. HAN J J, LIU J Y, GONG W J, et al. Object detection optimization research for mobile terminals[J]. Computer Engineering and Applications, 2022, 58(24): 12-28. [98] SHAHEED K, MAO A, QURESHI I, et al. DS-CNN: a pre-trained Xception model based on depth-wise separable convolutional neural network for finger vein recognition [J]. Expert Systems with Applications, 2022, 191: 116288. [99] REN H Y, SUN L J, GUO J, et al. A dataset and benchmark for multimodal biometric recognition based on fingerprint and finger vein[J]. IEEE Transactions on Information Forensics and Security, 2022, 17: 2030-2043. [100] HOWARD A, SANDLER M, CHU B, et al. Searching for MobileNetV3[C]//Proceedings of the 2019 IEEE/CVF Inter-national Conference on Computer Vision, Seoul, Oct 27, 2019. Piscataway: IEEE, 2019: 1314-1324. [101] TAN M X, CHEN B, PANG R M, et al. MnasNet: platform-aware neural architecture search for mobile[C]//Procee-dings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 15-20, 2019. Piscataway: IEEE, 2019: 2815-2823. [102] TAMANG L D, KIM B W. FVR-Net: finger vein recognition with convolutional neural network using hybrid pooling[J]. Applied Sciences, 2022, 12(5): 7538. [103] HOU B R, YAN R Q. ArcVein-Arccosine center loss for finger vein verification[J]. IEEE Transactions on Instru-mentation and Measurement, 2021, 70: 1-11. [104] KUZU R S, MAIORANA E, CAMPISI P. Vein-based biometric verification using densely-connected convolutional auto-encoder[J]. IEEE Signal Processing Letters, 2020, 27: 1869-1873. [105] HU J, SHEN L, SUN G. Squeeze-and-excitation networks [C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-23, 2018. Piscataway: IEEE, 2018: 7132-7141. [106] WANG Q L, WU B G, ZHU P F, et al. ECA-Net: efficient channel attention for deep convolutional neural networks [C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 11531-11539. [107] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//LNCS 11211: Proceedings of the 15th Europeon Conference on Computer Vision, Munich, Sep 8-14, 2018. Cham: Springer, 2018: 3-19. [108] HUANG J D, TU M, YANG W L, et al. Joint attention network for finger vein authentication[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1-11. [109] WANG K X, CHEN G H, CHU H J. Finger vein recognition based on multi-receptive field bilinear convolutional neural network[J]. IEEE Signal Processing Letters, 2021, 28: 1590- 1594. [110] WANG H, WANG Y T, ZHOU Z, et al. CosFace: large margin cosine loss for deep face recognition[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-23, 2018. Piscataway: IEEE, 2018: 5265-5274. [111] DENG J K, GUO J, XUE N N, et al. ArcFace: additive angular margin loss for deep face recognition[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 15-20, 2019. Piscataway: IEEE, 2019: 4685-4694. [112] SCHROFF F, KALENICHENKO D, PHILBIN J. FaceNet: a unified embedding for face recognition and clustering[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, Jun 7-12, 2015. Piscataway: IEEE, 2015: 815-823. [113] WEN Y D, ZHANG K P, LI Z F, et al. A discriminative feature learning approach for deep face recognition[C]//LNCS 9911: Proceedings of the 14th European Conference on Computer Vision, Netherlands, Oct 11-14, 2016. Cham: Springer, 2016: 499-515. [114] KUZU R S, MAIORANA E, CAMPISI P. Loss functions for CNN-based biometric vein recognition[C]//Proceedings of the 28th European Signal Processing Conference, Amster- dam, Jan 18-21, 2021. Piscataway: IEEE, 2021: 750-754. [115] TRAN N C, WANG J H, VU T H, et al. Anti?aliasing convolution neural network of finger vein recognition for virtual reality (VR) human-robot equipment of metaverse [J]. The Journal of Supercomputing, 2023, 79: 2767-2782. [116] KANG W X, LIU H D, LUO W, et al. Study of a full-view 3D finger vein verification technique[J]. IEEE Transactions on Information Forensics and Security, 2020, 15: 1175-1189. [117] KAMARUDDIN N M, ROSDI B A. A new filter generation method in PCANet for finger vein recognition[J]. IEEE Access, 2019, 7: 132966-132978. [118] ZHONG Y Q, LI J H, CHAI T T, et al. Different dimension issues in deep feature space for finger-vein recognition[C]//LNCS 12878: Proceedings of the Chinese Conference on Biometric Recognition, Shanghai, Sep 10-12, 2021. Cham: Springer, 2021: 295-303. [119] SHEN J Q, LIU N Z, XU C L, et al. Finger vein recognition algorithm based on lightweight deep convolutional neural network[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 1-13. [120] WANG Y, SHI D K, ZHOU W B. Convolutional neural network approach based on multimodal biometric system with fusion of face and finger vein features[J]. Sensors, 2022, 22(16): 6039. [121] BOUCHERIT I, ZMIRLI M O, HENTABLI H, et al. Finger vein identification using deeply-fused convolutional neural network[J]. Journal of King Saud University— Computer and Information Sciences, 2022, 34(4): 646-656. [122] LI S Y, MA R J, FEI L K, et al. Learning compact multi-representation feature descriptor for finger-vein recognition[J]. IEEE Transactions on Information Forensics and Security, 2022, 17: 1946-1958. [123] ALDJIA B, LEILA B. Biometric authentication using finger-vein patterns with deep-learning and discriminant correlation analysis[J]. International Journal of Image and Graphics, 2022, 22(1): 2250013. [124] NOH K J, CHOI J, HONG J S, et al. Finger-vein recognition using heterogeneous databases by domain adaption based on a cycle-consistent adversarial network[J]. Sensors, 2021, 21: 524. [125] LIN L Y, LIU H Z, ZHANG W T, et al. Finger vein verifica-tion using intrinsic and extrinsic features[C]//Proceedings of the 2021 IEEE International Joint Conference on Biometrics, Shenzhen, Aug 4-7, 2021. Piscataway: IEEE, 2021: 1-7. [126] LI H C, LYU Y, DUAN G D, et al. Improving finger vein discriminant representation using dynamic margin softmax loss[J]. Neural Computing and Applications, 2022, 34: 3589-3601. [127] HUANG J D, ZHENG A, SHAKEEL M S, et al. FVFSNet: frequency-spatial coupling network for finger vein aut-hentication[J]. IEEE Transactions on Information Forensics and Security, 2023, 18: 1322-1334. [128] CHERRAT E M, ALAOUI R, BOUZAHIR H. Convolu-tional neural networks approach for multimodal biometric identification system using the fusion of fingerprint, finger-vein and face images[J]. PeerJ Computer Science, 2020, 6: e248. [129] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems 30, Long Beach, Dec 4-9, 2017: 5998-6008. [130] LIU Z, LIN Y T, CAO Y, et al. Swin Transformer: hierarchical vision transformer using shifted windows[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Oct 10-17, 2021. Piscataway: IEEE, 2021: 9992-10002. [131] ZHU X Z, SU W, LU L, et al. Deformable DETR: deformable transformers for end-to-end object detection[J]. arXiv:2010.04159, 2020. [132] LI F, ZHANG H, LIU S L, et al. DN-DETR: accelerate DETR training by introducing query denoising[C]//Proceed-ings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, Jun 18-24, 2022. Piscataway: IEEE, 2022: 13609-13617. [133] 吴凯, 沈文忠, 贾丁丁, 等. 融合Transformer和CNN的手掌静脉识别网络[J/OL]. 计算机工程与应用(2022-11-10)[2023-04-16]. http://kns.cnki.net/kcms/detail/11.2127.TP. 20221109.1109.002.html. WU K, SHEN W Z, JIA D D, et al. Palm vein recognition network combining Transformer and CNN[J/OL]. Computer Engineering and Applications (2022-11-10)[2023-04-16]. http://kns.cnki.net/kcms/detail/11.2127.TP.20221109.1109.002. html. |
[1] | WANG Bing, HUANG Gang, ZHANG Xingpeng. Research on Crisp Edge Detection with Fusion of Convolutional Features [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(9): 2148-2160. |
[2] | ZHAO Tingting, SUN Wei, CHEN Yarui, WANG Yuan, YANG Jucheng. Review of Deep Reinforcement Learning in Latent Space [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(9): 2047-2074. |
[3] | LIU Hualing, CHEN Shanghui, CAO Shijie, ZHU Jianliang, REN Qingqing. Survey of Fake News Detection with Multi-model Learning [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(9): 2015-2029. |
[4] | XU Guangxian, FENG Chun, MA Fei. Review of Medical Image Segmentation Based on UNet [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(8): 1776-1792. |
[5] | JI Changqing, WANG Bingbing, QIN Jing, WANG Zumin. Survey of Deep Feature Instance Level Image Retrieval Algorithms [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(7): 1565-1575. |
[6] | WU Shuixiu, LUO Xianzeng, XIONG Jian, ZHONG Maosheng, WANG Mingwen. Review on Research of Knowledge Tracking [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(7): 1506-1525. |
[7] | MA Yan, Gulimila·Kezierbieke. Research Review of Image Semantic Segmentation Method in High-Resolution Remote Sensing Image Interpretation [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(7): 1526-1548. |
[8] | ZHANG Rulin, WANG Hailong, LIU Lin, PEI Dongmei. Survey of Research on Automatic Music Annotation and Classification Methods [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(6): 1225-1248. |
[9] | LIANG Hongtao, LIU Shuo, DU Junwei, HU Qiang, YU Xu. Review of Deep Learning Applied to Time Series Prediction [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(6): 1285-1300. |
[10] | LIU Jing, ZHAO Wei, DONG Zehao, WANG Shaohua, WANG Yu. Motor Imagery Signal Classification Based on Multi-scale Self-attentional Mechanism [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(6): 1427-1440. |
[11] | CAO Yiqin, RAO Zhechu, ZHU Zhiliang, WAN Sui. Dual-channel Quaternion Convolutional Network for Denoising [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(6): 1359-1372. |
[12] | CAO Siming, WANG Xiaohua, WANG Hongkun, CAO Yi. MSV-Net: Visual Super-Resolution Reconstruction for Scientific Simulated Data of Mixed Surface-Volume [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(6): 1321-1328. |
[13] | SUN Jiaze+, TANG Yanmei, WANG Shuyan. Model Robustness Optimization Method Using GAN and Feature Pyramid [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(5): 1139-1146. |
[14] | QIAN Hanwei, SUN Weisong. Survey on Backdoor Attacks and Countermeasures in Deep Neural Network [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(5): 1038-1048. |
[15] | HUANG TAO, LI Hua, ZHOU Gui, LI Shaobo, WANG Yang. Survey of Research on Instance Segmentation Methods [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(4): 810-825. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/