Journal of Frontiers of Computer Science and Technology ›› 2023, Vol. 17 ›› Issue (7): 1565-1575.DOI: 10.3778/j.issn.1673-9418.2210125
• Frontiers·Surveys • Previous Articles Next Articles
JI Changqing, WANG Bingbing, QIN Jing, WANG Zumin
Online:
2023-07-01
Published:
2023-07-01
季长清,王兵兵,秦静,汪祖民
JI Changqing, WANG Bingbing, QIN Jing, WANG Zumin. Survey of Deep Feature Instance Level Image Retrieval Algorithms[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(7): 1565-1575.
季长清, 王兵兵, 秦静, 汪祖民. 深度特征的实例图像检索算法综述[J]. 计算机科学与探索, 2023, 17(7): 1565-1575.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2210125
[1] DUBEY S R. A decade survey of content based image retrieval using deep learning[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 32(5): 2687-2704. [2] GORDO A, LARLUS D. Beyond instance-level image retrieval: leveraging captions to learn a global visual representation for semantic retrieval[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 6589-6598. [3] BARZ B, DENZLER J. Content-based image retrieval and the semantic gap in the deep learning era[C]//LNCS 12662:Proceedings of the 2021 ICPR International Workshops and Challenges Pattern Recognition, Jan 10-15, 2021. Cham: Springer, 2021: 245-260. [4] WANG X, HAN X T, HUANG W L, et al. Multi-similarity loss with general pair weighting for deep metric learning[C]//Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 5022-5030. [5] FENG Q, WEI Y, YI Y, et al. Local ternary cross structure pattern: a color LBP feature extraction with applications in CBIR[J]. Applied Sciences, 2019, 9(11): 2211. [6] LI X, YANG J, MA J. Recent developments of content-based image retrieval (CBIR)[J]. Neurocomputing, 2021, 452: 675-689. [7] LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110. [8] LIU Y, GUO Y Y, FANG J, et al. Review of cross-modal image and text retrieval of deep learning[J]. Computer Science and Exploration, 2022, 16(3): 489. [9] BAI C, CHEN J, HUANG L, et al. Saliency-based multi-feature modeling for semantic image retrieval[J]. Journal of Visual Communication and Image Representation, 2018, 50: 199-204. [10] LAI C C, CHEN Y C. A user-oriented image retrieval system based on an interactive genetic algorithm[J]. IEEE Transactions on Instrumentation and Measurement, 2011, 60(10): 3318-3325. [11] ZHAO Z, TIAN Q, SUN H, et al. Content based image retrieval scheme using color, texture and shape features[J]. International Journal of Signal Processing, Image Processing and Pattern Recognition, 2016, 9(1): 203-212. [12] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]//Proceedings of the 26th Annual Conference on Neural Information Processing Systems 2012, Lake Tahoe, Dec 3-6, 2012. Red Hook: Curran Associates, 2012: 1106-1114. [13] BABENKO A, SLESAREV A, CHIGORIN A, et al. Neural codes for image retrieval[C]//LNCS 8689: Proceedings of the 13th European Conference on Computer Vision, Zurich, Sep 6-12, 2014. Cham: Springer, 2014: 584-599. [14] SHARIF RAZAVIAN A, AZIZPOUR H, SULLIVAN J, et al. CNN features off-the-shelf: an astounding baseline for recognition[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, Jun 23-28, 2014. Washington: IEEE Computer Society, 2014: 512-519. [15] PIRAS L, GIACINTO G. Information fusion in content based image retrieval: a comprehensive overview[J]. Information Fusion, 2017, 37: 50-60. [16] WANG J, ZHANG T, SEBE N, et al. A survey on learning to hash[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 40(4): 769-790. [17] 张皓, 吴建鑫. 基于深度特征的无监督图像检索研究综述[J]. 计算机研究与发展, 2018, 55(9): 1829-1842. ZHANG H, WU J X. A survey on unsupervised image retrieval using deep features[J]. Journal of Computer Research and Development, 2018, 55(9): 1829-1842. [18] CHEN W, LIU Y, WANG W, et al. Deep learning for instance retrieval: a survey[J]. arXiv:2101.11282, 2021. [19] 杨慧, 施水才. 基于内容的图像检索技术研究综述[J/OL].软件导刊[2023-02-07]. http://kns.cnki.net/kcms/detail/42. 1671.TP.20230118.1313.002.html. YANG H, SHI S C. Review of content-based image retrieval technology[J/OL]. Software Guide[2023-02-07]. http://kns.cnki.net/kcms/detail/42.1671.TP.20230118.1313.002.html. [20] JAIN A K, VAILAYA A. Image retrieval using color and shape[J]. Pattern Recognition, 1996, 29(8): 1233-1244. [21] MANJUNATH B S, MA W Y. Texture features for browsing and retrieval of image data[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996, 18(8): 837-842. [22] KUMAR P S S, KUMAR N U, USHASREE A, et al. Keypoint oriented shape features and SVM classifier for content-based image retrieval[J]. Materials Today: Proceedings, 2020. [23] SIVIC J, ZISSERMAN A. Video Google: a text retrieval approach to object matching in videos[C]//Proceedings of the 9th IEEE International Conference on Computer Vision,Nice, Oct 14-17, 2003. Washington: IEEE Computer Society, 2003: 1470-1470. [24] JING L, TIAN Y. Self-supervised visual feature learning with deep neural networks: a survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 43(11): 4037-4058. [25] NG J Y H, YANG F, DAVIS L S. Exploiting local features from deep networks for image retrieval[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, Jun 7-12, 2015. Washington: IEEE Computer Society, 2015: 53-61. [26] NG T, BALNTAS V, TIAN Y, et al. SOLAR: second-order loss and attention for image retrieval[C]//LNCS 12370:Proceedings of the 16th European Conference on Computer Vision, Glasgow, Aug 23-28, 2020. Cham: Springer, 2020: 253-270. [27] ABDI H, WILLIAMS L J. Principal component analysis[J]. Wiley Interdisciplinary Reviews: Computational Statistics, 2010, 2(4): 433-459. [28] SONG J, HE T, GAO L, et al. Deep region hashing for efficient large-scale instance search from images[J]. arXiv:1701.07901, 2017. [29] 易军凯, 何潇然, 姜大光. 图像内容理解的深度学习方法[J]. 计算机工程与设计, 2017, 38(3): 756-760. YI J K, HE X R, JIANG D G. Deep learning method for image content understanding[J]. Computer Engineering and Design, 2017, 38(3): 756-760. [30] 葛芸, 马琳, 江顺亮, 等. 基于高层特征图组合及池化的高分辨率遥感图像检索[J]. 电子与信息学报, 2019, 41(10): 2487-2494. GE Y, MA L, JIANG S L, et al. The combination and pooling based on high-level feature map for high-resolution remote sensing image retrieval[J]. Journal of Electronics & Information Technology, 2019, 41(10): 2487-2494. [31] ANAVI Y, KOGAN I, GELBART E, et al. A comparative study for chest radiograph image retrieval using binary texture and deep learning classification[C]//Proceedings of the 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Milan, Aug 25-29, 2015. Piscataway: IEEE, 2015: 2940-2943. [32] QAYYUM A, ANWAR S M, AWAIS M, et al. Medical image retrieval using deep convolutional neural network[J]. Neurocomputing, 2017, 266: 8-20. [33] GORDO A, ALMAZáN J, REVAUD J, et al. Deep image retrieval: learning global representations for image search[C]//LNCS 9910: Proceedings of the 14th European Conference on Computer Vision, Amsterdam, Oct 11-14, 2016. Cham: Springer, 2016: 241-257. [34] LIN K, YANG H F, LIU K H, et al. Rapid clothing retrieval via deep learning of binary codes and hierarchical search[C]//Proceedings of the 5th ACM on International Conference on Multimedia Retrieval, Shanghai, Jun 23-26, 2015. New York: ACM, 2015: 499-502. [35] HUANG J, FERIS R S, CHEN Q, et al. Cross-domain image retrieval with a dual attribute-aware ranking network[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision, Santiago, Dec 7-13, 2015. Washington: IEEE Computer Society, 2015: 1062-1070. [36] LI Y, LEI H, LIN S, et al. A new sketch-based 3D model retrieval method by using composite features[J]. Multimedia Tools and Applications, 2018, 77(2): 2921-2944. [37] WEI L H, ZHANG S L, YAO H T, et al. GLAD: global-local-alignment descriptor for pedestrian retrieval[C]//Proceedings of the 2017 ACM on Multimedia Conference,Mountain View, Oct 23-27, 2017. New York: ACM, 2017: 420-428. [38] XIANG X L, WANG Z P, ZHAO Z C, et al. Multiple saliency and channel sensitivity network for aggregated convolutional feature[C]//Proceedings of the 33rd AAAI Conference on Artificial Intelligence, the 31st Innovative Applications of Artificial Intelligence Conference, the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, Honolulu, Jan 27-Feb 1, 2019. Menlo Park:AAAI, 2019: 9013-9020. [39] RAZAVIAN A S, SULLIVAN J, CARLSSON S, et al. Visual instance retrieval with deep convolutional networks[J]. ITE Transactions on Media Technology and Applications, 2016, 4(3): 251-258. [40] PANG S, XUE J, ZHU J, et al. Unifying sum and weighted aggregations for efficient yet effective image representation computation[J]. IEEE Transactions on Image Processing, 2018, 28(2): 841-852. [41] TOLIAS G, SICRE R, JéGOU H. Particular object retrieval with integral max-pooling of CNN activations[J]. arXiv:1511.05879, 2015. [42] BABENKO A, LEMPITSKY V. Aggregating deep convolutional features for image retrieval[J]. arXiv:1510.07493, 2015. [43] ISCEN A, AVRITHIS Y, TOLIAS G, et al. Fast spectral ranking for similarity search[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Washington: IEEE Computer Society, 2018: 7632-7641. [44] KALANTIDIS Y, MELLINA C, OSINDERO S. Cross-dimensional weighting for aggregated deep convolutional features[C]//LNCS 9913: Proceedings of the 14th European Conference on Computer Vision, Amsterdam, Oct 8-10, 2016. Cham: Springer, 2016: 685-701. [45] JéGOU H, DOUZE M, SCHMID C. On the burstiness of visual elements[C]//Proceedings of the 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Miami, Jun 20-25, 2009. Washington:IEEE Computer Society, 2009: 1169-1176. [46] WEI X S, LUO J H, WU J, et al. Selective convolutional descriptor aggregation for fine-grained image retrieval[J]. IEEE Transactions on Image Processing, 2017, 26(6): 2868-2881. [47] XU J, SHI C, QI C, et al. Unsupervised part-based weighting aggregation of deep convolutional features for image retrieval[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence, the 30th Innovative Applications of Artificial Intelligence, and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence, New Orleans, Feb 2-7, 2018. Menlo Park: AAAI, 2018: 7436-7443. [48] XU J, WANG C, QI C, et al. Unsupervised semantic-based aggregation of deep convolutional features[J]. IEEE Tran-sactions on Image Processing, 2018, 28(2): 601-611. [49] ZHU J, WANG J, PANG S, et al. Co-weighting semantic convolutional features for object retrieval[J]. Journal of Visual Communication and Image Representation, 2019, 62: 368-380. [50] LIU G H, YANG J Y. Deep-seated features histogram: a novel image retrieval method[J]. Pattern Recognition, 2021, 116: 107926. [51] ZHOU J, GAN J, GAO W, et al. Image retrieval based on aggregated deep features weighted by regional significance and channel sensitivity[J]. Information Sciences, 2021, 577: 69-80. [52] LU F, LIU G H. Image retrieval using contrastive weight aggregation histograms[J]. Digital Signal Processing, 2022, 123: 103457. [53] LI Y, HE Z, MA J, et al. A novel feature aggregation approach for image retrieval using local and global features[J]. Computer Modeling in Engineering & Sciences, 2022, 131(1): 239-262. [54] SONG C H, HAN H J, AVRITHIS Y. All the attention you need: global-local, spatial-channel attention for image retri-eval[C]//Proceedings of the 2022 IEEE/CVF Winter Con-ference on Applications of Computer Vision, Waikoloa, Jan 3-8, 2022. Piscataway: IEEE, 2022: 439-448. [55] ZHANG Z, LUO C, WU H, et al. From individual to whole: reducing intra-class variance by feature aggregation[J]. International Journal of Computer Vision, 2022, 130(3): 800-819. [56] CAO B, ARAUJO A, SIM J. Unifying deep local and global features for image search[C]//LNCS 12365: Proceedings of the 16th European Conference on Computer Vision, Glasgow, Aug 23-28, 2020. Cham: Springer, 2020: 726-743. [57] YANG M, HE D, FAN M, et al. DOLG: single-stage image retrieval with deep orthogonal fusion of local and global features[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Oct 10-17, 2021. Piscataway: IEEE, 2021: 11772-11781. [58] HENKEL C. Efficient large-scale image retrieval with deep feature orthogonality and hybrid-swin-transformers[J]. arXiv: 2110.03786, 2021. [59] SONG Y, ZHU R, YANG M, et al. DALG: deep attentive local and global modeling for image retrieval[J]. arXiv:2207.00287, 2022. [60] CHEN Y, ZHANG S, LIU F, et al. Transhash: transformer-based Hamming hashing for efficient image retrieval[C]//Proceedings of the 2022 International Conference on Multi-media Retrieval, Newark, Jun 27-30, 2022. New York:ACM, 2022: 127-136. [61] LI Y, ZHANG Y, TAO C, et al. Content-based high-reso-lution remote sensing image retrieval via unsupervised feature learning and collaborative affinity metric fusion[J]. Remote Sensing, 2016, 8(9): 709. [62] ZHOU W, NEWSAM S, LI C, et al. Learning low dimensional convolutional neural networks for high-resolution remote sensing image retrieval[J]. Remote Sensing, 2017, 9(5): 489. [63] HU F, TONG X, XIA G S, et al. Delving into deep represen-tations for remote sensing image retrieval[C]//Proceedings of the 2016 IEEE 13th International Conference on Signal Processing, Chengdu, Nov 6-10, 2016. Piscataway: IEEE, 2016: 198-203. [64] CAO R, ZHANG Q, ZHU J, et al. Enhancing remote sensing image retrieval with triplet deep metric learning network[J]. arXiv:1902.05818, 2019. [65] WANG Z, LIU X, LI H, et al. A saliency detection based unsupervised commodity object retrieval scheme[J]. IEEE Access, 2018, 6: 49902-49912. [66] YAMAGUCHI T, ARASE K, TOGASHI R, et al. Closing the gap between query and database through query feature transformation in C2C e-commerce visual search[C]//Pro-ceedings of the SIGIR 2019 Workshop on eCommerce, co-located with the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, Paris, Jul 25, 2019: 1-4. [67] MAGNANI A, LIU F, XIE M, et al. Neural product retrieval at walmart.com[C]//Proceedings of the 2019 World Wide Web Conference,San Francisco, May 13-17, 2019. New York: ACM, 2019: 367-372. [68] WICKSTR?M K K, ?STMO E A, RADIYA K, et al. A clinically motivated self-supervised approach for content-based image retrieval of CT liver images[J]. arXiv:2207. 04812, 2022. [69] MOHITE N B, GONDE A B. Deep features based medical image retrieval[J]. Multimedia Tools and Applications, 2022, 81(8): 11379-11392. [70] TRUONG T, MOHAMMADI S, LENGA M. How transferable are self-supervised features in medical image classification tasks?[C]//Proceedings of the Machine Learning for Health,Dec 4, 2021: 54-74. [71] AZIZI S, MUSTAFA B, RYAN F, et al. Big self-supervised models advance medical image classification[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Oct 10-17, 2021. Piscataway: IEEE, 2021: 3458-3468. [72] JEGOU H, DOUZE M, SCHMID C. Product quantization for nearest neighbor search[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 33(1): 117-128. [73] PERRONNIN F, LIU Y, SáNCHEZ J, et al. Large-scale image retrieval with compressed fisher vectors[C]//Pro-ceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, Jun 13-18, 2010 . Piscataway: IEEE, 2010: 3384-3391. [74] ZHOU S R, XIE Y, CAI B Y. Deep Hash image retrieval method based on multi-scale features[J]. Computer Science and Exploration, 2018, 12(12): 1974-1986. |
[1] | XU Guangxian, FENG Chun, MA Fei. Review of Medical Image Segmentation Based on UNet [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(8): 1776-1792. |
[2] | WU Shuixiu, LUO Xianzeng, XIONG Jian, ZHONG Maosheng, WANG Mingwen. Review on Research of Knowledge Tracking [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(7): 1506-1525. |
[3] | MA Yan, Gulimila·Kezierbieke. Research Review of Image Semantic Segmentation Method in High-Resolution Remote Sensing Image Interpretation [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(7): 1526-1548. |
[4] | ZHANG Rulin, WANG Hailong, LIU Lin, PEI Dongmei. Survey of Research on Automatic Music Annotation and Classification Methods [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(6): 1225-1248. |
[5] | LIANG Hongtao, LIU Shuo, DU Junwei, HU Qiang, YU Xu. Review of Deep Learning Applied to Time Series Prediction [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(6): 1285-1300. |
[6] | LIU Jing, ZHAO Wei, DONG Zehao, WANG Shaohua, WANG Yu. Motor Imagery Signal Classification Based on Multi-scale Self-attentional Mechanism [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(6): 1427-1440. |
[7] | CAO Yiqin, RAO Zhechu, ZHU Zhiliang, WAN Sui. Dual-channel Quaternion Convolutional Network for Denoising [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(6): 1359-1372. |
[8] | CAO Siming, WANG Xiaohua, WANG Hongkun, CAO Yi. MSV-Net: Visual Super-Resolution Reconstruction for Scientific Simulated Data of Mixed Surface-Volume [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(6): 1321-1328. |
[9] | HUANG TAO, LI Hua, ZHOU Gui, LI Shaobo, WANG Yang. Survey of Research on Instance Segmentation Methods [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(4): 810-825. |
[10] | AN Shengbiao, GUO Yuqi, BAI Yu, WANG Tengbo. Survey of Few-Shot Image Classification Research [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(3): 511-532. |
[11] | JIAO Lei, YUN Jing, LIU Limin, ZHENG Bofei, YUAN Jingshu. Overview of Closed-Domain Deep Learning Event Extraction Methods [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(3): 533-548. |
[12] | ZHOU Yan, WEI Qinbin, LIAO Junwei, ZENG Fanzhi, FENG Wenjie, LIU Xiangyu, ZHOU Yuexia. Natural Scene Text Detection and End-to-End Recognition: Deep Learning Methods [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(3): 577-594. |
[13] | WANG Wensen, HUANG Fengrong, WANG Xu, LIU Qinglin, YI Boheng. Overview of Visual Inertial Odometry Technology Based on Deep Learning [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(3): 549-560. |
[14] | LI Mingyang, CHEN Wei, WANG Shanshan, LI Jie, TIAN Zijian, ZHANG Fan. Survey on 3D Reconstruction Methods Based on Visual Deep Learning [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(2): 279-302. |
[15] | WU Xin, XU Hong, LIN Zhuosheng, LI Shengke, LIU Huilin, FENG Yue. Review of Deep Learning in Classification of Tongue Image [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(2): 303-323. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/