Journal of Frontiers of Computer Science and Technology ›› 2023, Vol. 17 ›› Issue (3): 577-594.DOI: 10.3778/j.issn.1673-9418.2209004
• Frontiers·Surveys • Previous Articles Next Articles
ZHOU Yan, WEI Qinbin, LIAO Junwei, ZENG Fanzhi, FENG Wenjie, LIU Xiangyu, ZHOU Yuexia
Online:
2023-03-01
Published:
2023-03-01
周燕,韦勤彬,廖俊玮,曾凡智,冯文婕,刘翔宇,周月霞
ZHOU Yan, WEI Qinbin, LIAO Junwei, ZENG Fanzhi, FENG Wenjie, LIU Xiangyu, ZHOU Yuexia. Natural Scene Text Detection and End-to-End Recognition: Deep Learning Methods[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(3): 577-594.
周燕, 韦勤彬, 廖俊玮, 曾凡智, 冯文婕, 刘翔宇, 周月霞. 自然场景文本检测与端到端识别:深度学习方法[J]. 计算机科学与探索, 2023, 17(3): 577-594.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2209004
[1] 李祥鹏, 闵卫东, 韩清, 等. 基于深度学习的车牌定位和识别方法[J]. 计算机辅助设计与图形学学报, 2019, 31(6): 979-987. LI X P, MIN W D, HAN Q, et al. License plate location and recognition based on deep learning[J]. Journal of Computer-Aided Design & Computer Graphics, 2019, 31(6): 979-987. [2] 汤战勇, 田超雄, 叶贵鑫, 等. 一种基于条件生成式对抗网络的文本类验证码识别方法[J]. 计算机学报, 2020, 43(8):1572-1588. TANG Z Y, TIAN C X, YE G X, et al. A recognition method for text-based captcha based on CGAN[J]. Chinese Journal of Computers, 2020, 43(8): 1572-1588. [3] 卓天天, 桑庆兵. 注意力机制与复合卷积在手写识别中的应用[J]. 计算机科学与探索, 2022, 16(4): 888-897. ZHUO T T, SAN Q B. Application of attention mechanism and composite convolution in handwriting recognition[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(4): 888-897. [4] GONZALEZ A, BERGASA L M, YEBES J J. Text detection and recognition on traffic panels from street-level imagery using visual appearance[J]. IEEE Transactions on Intelligent Transportation Systems, 2013, 15(1): 228-238. [5] ZHOU W, LI H, LU Y, et al. Principal visual word discovery for automatic license plate detection[J]. IEEE Transactions on Image Processing, 2012, 21(9): 4269-4279. [6] GREENHALGH J, MIRMEHDI M. Recognizing text-based traffic signs[J]. IEEE Transactions on Intelligent Transporta-tion Systems, 2014, 16(3): 1360-1369. [7] JUNG K, KIM K I, JAIN A K. Text information extraction in images and video: a survey[J]. Pattern Recognition, 2004, 37(5): 977-997. [8] EZAKI N, KIYOTA K, MINH B T, et al. Improved text-detection methods for a camera-based text reading system for blind persons[C]//Proceedings of the 8th International Conference on Document Analysis and Recognition, Seoul, Aug 31-Sep 1, 2005. Washington: IEEE Computer Society, 2005: 257-261. [9] EZAKI N, BULACU M, SCHOMAKER L. Text detection from natural scene images: towards a system for visually impaired persons[C]//Proceedings of the 17th International Conference on Pattern Recognition, Cambridge, Aug 23-26, 2004. Washington: IEEE Computer Society, 2004: 683-686. [10] HEDGPETH T, BLACK JR J A, PANCHANATHAN S. A demonstration of the iCARE portable reader[C]//Proceedings of the 8th International ACM SIGACCESS Conference on Computers and Accessibility, Portland, Oct 23-25, 2006. New York: ACM, 2006: 279-280. [11] GOTO H, TANAKA M. Text-tracking wearable camera system for the blind[C]//Proceedings of the 2009 10th International Conference on Document Analysis and Recognition, Barce-lona, Jul 26-29, 2009. Washington: IEEE Computer Society, 2009: 141-145. [12] SHILKROT R, HUBER J, LIU C, et al. FingerReader: a wearable device to support text reading on the Go[C]//Proceedings of the 2014 CHI Conference on Human Fac-tors in Computing Systems, Toronto, Apr 26-May 1, 2014. New York: ACM, 2014: 2359-2364. [13] 李益红, 陈袁宇. 深度学习场景文本检测方法综述[J]. 计算机工程与应用, 2021, 57(6): 42-48. LI Y H, CHEN Y Y. Review on deep learning based scene text detection[J]. Computer Engineering and Applications, 2021, 57(6): 42-48. [14] 王润民, 桑农, 丁丁, 等. 自然场景图像中的文本检测综述[J]. 自动化学报, 2018, 44(12): 2113-2141. WANG R M, SAN N, DING D, et al. Text detection in natural scene image: a survey[J]. Acta Automatica Sinica, 2018, 44(12): 2113-2141. [15] 王建新, 王子亚, 田萱. 基于深度学习的自然场景文本检测与识别综述[J]. 软件学报, 2020, 31(5): 1465-1496. WANG J X, WANG Z Y, TIAN X. Review of natural scene text detection and recognition based on deep learning[J]. Journal of Software , 2020, 31(5): 1465-1496. [16] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich fea-ture hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, Jun 23-28, 2014. Washington: IEEE Computer Society, 2014: 580-587. [17] REN S Q, HE K M, GIRSHICK R B, et al. Faster R-CNN: towards real-time object detection with region proposal net-works[C]//Proceedings of the Annual Conference on Neural Information Processing Systems 2015, Montreal, Dec 7-12, 2015. Red Hook: Curran Associates, 2015: 91-99. [18] ZHONG Z Y, JIN L W, HUANG S P. DeepText: a new app-roach for text proposal generation and text detection in natural images[C]//Proceedings of the 2017 IEEE Interna-tional Conference on Acoustics, Speech and Signal Proces-sing, New Orleans, Mar 5-9, 2017. Piscataway: IEEE, 2017:1208-1212. [19] JIANG Y Y, ZHU X Y, WANG X B, et al. R2CNN: rota-tional region CNN for orientation robust scene text detec-tion[J]. arXiv:1706.09579, 2017. [20] LIU Y L, JIN L W. Deep matching prior network: toward tighter multi-oriented text detection[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Re-cognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Com-puter Society, 2017: 3454-3461. [21] MA J, SHAO W, YE H, et al. Arbitrary-oriented scene text detection via rotation proposals[J]. IEEE Transactions on Multimedia, 2018, 20(11): 3111-3122. [22] LIAO M H, SHI B G, BAI X, et al. TextBoxes: a fast text detector with a single deep neural network[C]//Proceedings of the 31st AAAI Conference on Artificial Intelligence, San Francisco, Feb 4-9, 2017. Menlo Park: AAAI, 2017: 4161-4167. [23] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//LNCS 9905: Proceedings of the 14th European Conference on Computer Vision, Amsterdam, Oct 11-14, 2016. Cham: Springer, 2016: 21-37. [24] LIAO M, SHI B, BAI X. Textboxes++: a single-shot orien-ted scene text detector[J]. IEEE Transactions on Image Pro-cessing, 2018, 27(8): 3676-3690. [25] LIN J Y, PAN Y W, LAI R F, et al. Core-Text: improving scene text detection with contrastive relational reasoning[C]//Proceedings of the 2021 IEEE International Conference on Multimedia and Expo, Shenzhen, Jul 5-9, 2021. Piscata-way: IEEE, 2021: 1-6. [26] TIAN Z, HUANG W L, HE T, et al. Detecting text in na-tural image with connectionist text proposal network[C]//LNCS 9912: Proceedings of the 14th European Conference on Computer Vision, Amsterdam, Sep 12-17, 2016. Cham: Springer, 2016: 56-72. [27] SHI B G, BAI X, BELONGIE S J. Detecting oriented text in natural images by linking segments[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 3482-3490. [28] TANG J, YANG Z, WANG Y, et al. SegLink++: detecting dense and arbitrary-shaped scene text by instance-aware com-ponent grouping[J]. Pattern Recognition, 2019, 96: 106954. [29] ZHANG S X, ZHU X B, HOU J B, et al. Deep relational reasoning graph network for arbitrary shape text detection[C]//Proceedings of the 2020 IEEE/CVF Conference on Com-puter Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 9696-9705. [30] LI J M, ZHANG C Q, SUN Y P, et al. Detecting text in the wild with deep character embedding network[C]//LNCS 11364: Proceedings of the 14th Asian Conference on Computer Vi-sion, Perth, Dec 2-6, 2018. Cham: Springer, 2018: 501-517. [31] BAEK Y, LEE B, HAN D, et al. Character region awareness for text detection[C]//Proceedings of the 2019 IEEE Con-ference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 9365-9374. [32] LONG J, SHELHAMER E, DARRELL T. Fully convolu-tional networks for semantic segmentation[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, Jun 1-4, 2015. Washington: IEEE Com-puter Society, 2015: 3431-3440. [33] ZHOU X Y, YAO C, WEN H, et al. EAST: an efficient and accurate scene text detector[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 2642-2651. [34] HE W H, ZHANG X Y, YIN F, et al. Deep direct regression for multi-oriented scene text detection[C]//Proceedings of the 2017 IEEE International Conference on Computer Vi-sion, Venice, Oct 22-29, 2017. Washington: IEEE Computer Society, 2017: 745-753. [35] LONG S, RUAN J Q, ZHANG W J, et al. TextSnake: a flexible representation for detecting text of arbitrary shapes[C]//LNCS 11206: Proceedings of the 15th European Con-ference on Computer Vision, Munich, Sep 8-14, 2018. Cham: Springer, 2018: 19-35. [36] WANG P F, ZHANG C Q, QI F, et al. A single-shot arbitrarily-shaped text detector based on context attended multi-task learning[C]//Proceedings of the 27th ACM International Con-ference on Multimedia, Nice, Oct 21-25, 2019. New York: ACM, 2019: 1277-1285. [37] ZHONG Z, SUN L, HUO Q. An anchor-free region proposal network for Faster R-CNN-based text detection approaches[J]. International Journal on Document Analysis and Recog-nition, 2019, 22(3): 315-327. [38] ZHANG C Q, LIANG B R, HUANG Z M, et al. Look more than once: an accurate detector for text of arbitrary shapes[C]//Proceedings of the 2019 IEEE/CVF Conference on Com-puter Vision and Pattern Recognition, Long Beach, Jun 15-20, 2019. Piscataway: IEEE, 2019: 10552-10561. [39] HE M H, LIAO M H, YANG Z B, et al. MOST: a multi-oriented scene text detector with localization refinement[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Jun 19-25, 2021. Piscataway: IEEE, 2021: 8813-8822. [40] DENG D, LIU H F, LI X L, et al. Pixellink: detecting scene text via instance segmentation[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence, the 30th Inno-vative Applications of Artificial Intelligence, and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence, New Orleans, Feb 2-7, 2018. Menlo Park: AAAI, 2018: 6773-6780. [41] LI X, WANG W H, HOU W B, et al. Shape robust text detection with progressive scale expansion network[J]. arXiv: 1806.02559, 2018. [42] WANG W H, XIE E Z, SONG X G, et al. Efficient and accurate arbitrary-shaped text detection with pixel aggrega-tion network[C]//Proceedings of the 2019 IEEE/CVF Inter-national Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 8439-8448. [43] ZHANG S X, ZHU X, HOU J B, et al. Kernel proposal network for arbitrary shape text detection[J]. IEEE Transac-tions on Neural Networks and Learning Systems, 2022: 1-12. [44] LIAO M H, WAN Z Y, YAO C, et al. Real-time scene text detection with differentiable binarization[C]//Proceedings of the 34th AAAI Conference on Artificial Intelligence, the 32nd Innovative Applications of Artificial Intelligence Con-ference, the 10th AAAI Symposium on Educational Advan-ces in Artificial Intelligence, New York, Feb 7-12, 2020. Menlo Park: AAAI, 2020: 11474-11481. [45] LIAO M H, ZOU Z S, WAN Z Y, et al. Real-time scene text detection with differentiable binarization and adaptive scale fusion[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(1): 919-931. [46] XU Y C, WANG Y K, ZHOU W, et al. Textfield: learning a deep direction field for irregular scene text detection[J]. IEEE Transactions on Image Processing, 2019, 28(11): 5566-5579. [47] ZHU Y, DU J. Textmountain: accurate scene text detection via instance segmentation[J]. Pattern Recognition, 2021, 110: 107336. [48] XUE C H, LU S J, ZHANG W. MSR: multi-scale shape reg-ression for scene text detection[J]. arXiv:1901.02596, 2019. [49] DAI P W, ZHANG S Y, ZHANG H, et al. Progressive con-tour regression for arbitrary-shape scene text detection[C]//Proceedings of the 2021 IEEE Conference on Computer Vi-sion and Pattern Recognition, Jun 19-25, 2021. Piscataway:IEEE, 2021: 7393-7402. [50] ZHANG S X, ZHU X B, YANG C, et al. Adaptive boundary proposal network for arbitrary shape text detection[C]//Pro-ceedings of the 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Oct 10-17, 2021. Piscataway: IEEE, 2021: 1285-1294. [51] ZHANG S X, ZHU X B, YANG C, et al. Arbitrary shape text detection via boundary transformer[J]. arXiv:2205.05320, 2022. [52] TANG J Q, ZHANG W Q, LIU H Y, et al. Few could be better than all: feature sampling and grouping for scene text detection[C]//Proceedings of the 2022 IEEE/CVF Confer-ence on Computer Vision and Pattern Recognition, New Or-leans, Jun 18-24, 2022. Piscataway: IEEE, 2022: 4553-4562. [53] ZHU Y Q, CHEN J Y, LIANG L Y, et al. Fourier contour embedding for arbitrary-shaped text detection[C]//Procee-dings of the 2021 IEEE Conference on Computer Vision and Pattern Recognition, Jun 19-25, 2021. Piscataway: IEEE, 2021: 3123-3131. [54] SU Y, SHAO Z, ZHOU Y, et al. TextDCT: arbitrary-shaped text detection via discrete cosine transform mask[J]. IEEE Transactions on Multimedia, 2022: 1-14. [55] FANG S C, XIE H T, WANG Y X, et al. Read like humans: autonomous, bidirectional and iterative language modeling for scene text recognition[C]//Proceedings of the 2021 IEEE Conference on Computer Vision and Pattern Recognition, Jun 19-25, 2021. Piscataway: IEEE, 2021: 7098-7107. [56] HE Y, CHEN C, ZHANG J, et al. Visual semantics allow for textual reasoning better in scene text recognition[C]//Proceedings of the 36th AAAI Conference on Artificial In-telligence, the 34th Conference on Innovative Applications of Artificial Intelligence, the 12th Symposium on Educational Advances in Artificial Intelligence, Feb 22-Mar 1, 2022. Menlo Park: AAAI, 2022: 888-896. [57] CHU X J, WANG Y T. IterVM: iterative vision modeling module for scene text recognition[J]. arXiv:2204.02630, 2022. [58] DU Y K, CHEN Z N, JIA C Y, et al. SVTR: scene text recog-nition with a single visual model[J]. arXiv:2205.00159, 2022. [59] HE T, TIAN Z, HUANG W L, et al. An end-to-end textspot-ter with explicit alignment and attention[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-23, 2018. Wa-shington: IEEE Computer Society, 2018: 5020-5029. [60] FENG W, HE W H, YIN F, et al. TextDragon: an end-to-end framework for arbitrary shaped text spotting[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 9076-9085. [61] BAEK Y, SHIN S, BAEK J, et al. Character region atten-tion for text spotting[C]//LNCS 12374: Proceedings of the 16th European Conference on Computer Vision, Glasgow, Oct 7-10, 2020. Cham: Springer, 2020: 504-521. [62] HE K M, GKIOXARI G, DOLLáR P, et al. Mask R-CNN[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Oct 22-29, 2017. Washington:IEEE Computer Society, 2017: 2980-2988. [63] LYU P, LIAO M H, YAO C, et al. Mask TextSpotter: an end-to-end trainable neural network for spotting text with arbi-trary shapes[C]//LNCS 11218: Proceedings of the 15th Eu-ropean Conference on Computer Vision, Munich, Aug 26-Oct 9, 2018. Cham: Springer, 2018: 71-88. [64] LIAO M H, LYU P, HE M H, et al. Mask TextSpotter: an end-to-end trainable neural network for spotting text with arbitrary shapes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 43(2): 532-548. [65] LIAO M H, PANG G, HUANG J, et al. Mask TextSpotter V3: segmentation proposal network for robust scene text spotting[C]//LNCS 12356: Proceedings of the 16th European Conference on Computer Vision, Glasgow, Aug 23-28, 2020. Cham: Springer, 2020: 706-722. [66] HUANG J, PANG G, KOVVURI R, et al. A multiplexed net-work for end-to-end, multilingual OCR[C]//Proceedings of the 2021 IEEE Conference on Computer Vision and Pattern Recognition, Jun 19-25, 2021. Piscataway: IEEE, 2021: 4547-4557. [67] QIAO L, CHEN Y, CHENG Z, et al. Mango: a mask attention guided one-stage scene text spotter[J]. arXiv:2012.04350, 2020. [68] WANG P F, ZHANG C Q, QI F, et al. PGNet: real-time arbitrarily-shaped text spotting with point gathering network[C]//Proceedings of the 35th AAAI Conference on Artificial Intelligence, the 33rd Conference on Innovative Applica-tions of Artificial Intelligence, the 11th Symposium on Edu-cational Advances in Artificial Intelligence, Feb 2-9, 2021. Menlo Park: AAAI, 2021: 2782-2790. [69] WANG W H, XIE E Z, LI X, et al. PAN++: towards effi-cient and accurate end-to-end spotting of arbitrarily-shaped text[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(9): 5349-5367. [70] LIU Y L, CHEN H, SHEN C H, et al. ABCNet: real-time scene text spotting with adaptive Bezier-curve network[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Pis-cataway: IEEE, 2020: 9806-9815. [71] LIU Y L, SHEN C H, JIN L W, et al. ABCNet v2: adaptive Bezier-curve network for real-time end-to-end text spotting[J]. arXiv:2105.03620, 2021. [72] KITTENPLON Y, LAVI I, FOGEL S, et al. Towards weakly-supervised text spotting using a multi-task transformer[C]//Proceedings of the 2022 IEEE/CVF Conference on Com-puter Vision and Pattern Recognition, New Orleans, Jun 18-24, 2022. Piscataway: IEEE, 2022: 4594-4603. [73] WU J J, LYU P, LU G M, et al. Decoupling recognition from detection: single shot self-reliant scene text spotter[J]. arXiv:2207.07253, 2022. [74] HUANG M X, LIU Y L, PENG Z H, et al. SwinTextSpotter: scene text spotting via better synergy between text detec-tion and text recognition[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recogni-tion, New Orleans, Jun 18-24, 2022. Piscataway: IEEE, 2022: 4583-4593. [75] ZHANG X, SU Y W, TRIPATHI S, et al. Text spotting tran-sformers[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, Jun 18-24, 2022. Piscataway: IEEE, 2022: 9509-9518. [76] KARATZAS D, SHAFAIT F, UCHIDA S, et al. ICDAR 2013 robust reading competition[C]//Proceedings of the 12th In-ternational Conference on Document Analysis and Recog-nition, Washington, Aug 25-28, 2013. Washington: IEEE Com-puter Society, 2013: 1484-1493. [77] KARATZAS D, GOMEZ-BIGORDA L, NICOLAOU A, et al. ICDAR 2015 competition on robust reading[C]//Proceedings of the 13th International Conference on Document Analysis and Recognition, Nancy, Aug 23-26, 2015. Washington: IEEE Computer Society, 2015: 1156-1160. [78] NAYEF N, YIN F, BIZID I, et al. ICDAR2017 robust rea-ding challenge on multi-lingual scene text detection and script identification-RRC-MLT[C]//Proceedings of the 14th IAPR International Conference on Document Analysis and Recog-nition, Kyoto, Nov 9-15, 2017. Piscataway: IEEE, 2017: 1454-1459. [79] YAO C, BAI X, LIU W Y, et al. Detecting texts of arbitrary orientations in natural images[C]//Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recogni-tion, Providence, Jun 16-21, 2012. Washington: IEEE Com-puter Society, 2012: 1083-1090. [80] GOMEZ R, SHI B G, GOMEZ-BIGORDA L, et al. ICDAR-2017 robust reading challenge on COCO-Text[C]//Procee-dings of the 14th IAPR International Conference on Docu-ment Analysis and Recognition, Kyoto, Nov 9-15, 2017. Pis-cataway: IEEE, 2017: 1435-1443. [81] WANG K, BELONGIE S J. Word spotting in the wild[C]//LNCS 6311: Proceedings of the 11th European Conference on Computer Vision, Heraklion, Sep 5-11, 2010. Berlin, Hei-delberg: Springer, 2010: 591-604. [82] LIU Y L, JIN L W, ZHANG S T J, et al. Detecting curve text in the wild: new dataset and new solution[J]. arXiv:1712.02170, 2017. [83] CHNG C K, CHAN C S. Total-text: a comprehensive dataset for scene text detection and recognition[C]//Proceedings of the 14th IAPR International Conference on Document Analysis and Recognition, Kyoto, Nov 9-15, 2017. Piscataway: IEEE, 2017: 935-942. [84] SUN Y P, NI Z H, CHNG C K, et al. ICDAR 2019 com-petition on large-scale street view text with partial labeling-RRC-LSVT[C]//Proceedings of the 2019 International Con-ference on Document Analysis and Recognition, Sydney, Sep 20-25, 2019. Piscataway: IEEE, 2019: 1557-1562. [85] MISHRA A, ALAHARI K, JAWAHAR C V. Scene text re-cognition using higher order language priors[C]//Proceedings of the British Machine Vision Conference, Surrey, Sep 3-7, 2012. Durham: BMVA Press, 2012: 1-11. [86] RISNUMAWAN A, SHIVAKUMARA P, CHAN C S, et al. A robust arbitrary text detection system for natural scene images[J]. Expert Systems with Applications, 2014, 41(18): 8027-8048. [87] JADERBERG M, SIMONYAN K, VEDALDI A, et al. Rea-ding text in the wild with convolutional neural networks[J]. International Journal of Computer Vision, 2016, 116(1): 1-20. |
[1] | HUANG TAO, LI Hua, ZHOU Gui, LI Shaobo, WANG Yang. Survey of Research on Instance Segmentation Methods [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(4): 810-825. |
[2] | AN Shengbiao, GUO Yuqi, BAI Yu, WANG Tengbo. Survey of Few-Shot Image Classification Research [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(3): 511-532. |
[3] | JIAO Lei, YUN Jing, LIU Limin, ZHENG Bofei, YUAN Jingshu. Overview of Closed-Domain Deep Learning Event Extraction Methods [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(3): 533-548. |
[4] | WANG Wensen, HUANG Fengrong, WANG Xu, LIU Qinglin, YI Boheng. Overview of Visual Inertial Odometry Technology Based on Deep Learning [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(3): 549-560. |
[5] | LI Mingyang, CHEN Wei, WANG Shanshan, LI Jie, TIAN Zijian, ZHANG Fan. Survey on 3D Reconstruction Methods Based on Visual Deep Learning [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(2): 279-302. |
[6] | WU Xin, XU Hong, LIN Zhuosheng, LI Shengke, LIU Huilin, FENG Yue. Review of Deep Learning in Classification of Tongue Image [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(2): 303-323. |
[7] | WANG Yingjie, ZHANG Chengye, BAI Fengbo, WANG Zumin, JI Changqing. Review of Chinese Named Entity Recognition Research [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(2): 324-341. |
[8] | WANG Yan, LYU Yanping. Hybrid Deep CNN-Attention for Hyperspectral Image Classification [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(2): 385-395. |
[9] | TONG Hang, YANG Yan, JIANG Yongquan. Multi-head Self-attention Neural Network for Detecting EEG Epilepsy [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(2): 442-452. |
[10] | ZHANG Lu, LU Tianliang, DU Yanhui. Overview of Facial Deepfake Video Detection Methods [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(1): 1-26. |
[11] | WANG Shichen, HUANG Kai, CHEN Zhigang, ZHANG Wendong. Survey on 3D Human Pose Estimation of Deep Learning [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(1): 74-87. |
[12] | LIANG Jiali, HUA Baojian, LYU Yashuai, SU Zhenyu. Loop Invariant Code Motion Algorithm for Deep Learning Operators [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(1): 127-139. |
[13] | WANG Jianzhe, WU Qin. Salient Object Detection Based on Coordinate Attention Feature Pyramid [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(1): 154-165. |
[14] | YANG Caidong, LI Chengyang, LI Zhongbo, XIE Yongqiang, SUN Fangwei, QI Jin. Review of Image Super-resolution Reconstruction Algorithms Based on Deep Learning [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(9): 1990-2010. |
[15] | ZHANG Xiangping, LIU Jianxun. Overview of Deep Learning-Based Code Representation and Its Applications [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(9): 2011-2029. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/