Journal of Frontiers of Computer Science and Technology ›› 2023, Vol. 17 ›› Issue (1): 1-26.DOI: 10.3778/j.issn.1673-9418.2205035
• Frontiers·Surveys • Previous Articles Next Articles
ZHANG Lu, LU Tianliang, DU Yanhui
Online:
2023-01-01
Published:
2023-01-01
张璐,芦天亮,杜彦辉
ZHANG Lu, LU Tianliang, DU Yanhui. Overview of Facial Deepfake Video Detection Methods[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(1): 1-26.
张璐, 芦天亮, 杜彦辉. 人脸视频深度伪造检测方法综述[J]. 计算机科学与探索, 2023, 17(1): 1-26.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2205035
[1] 姬德强. 深度造假: 人工智能时代的视觉政治[J]. 新闻大学, 2020, 7: 1-16. JI D Q. DeepFake: visual politics in the era of artificial in-telligence[J]. Journalistic University, 2020, 7: 1-16. [2] 高威, 萧子豪, 朱益灵. DeepFake 技术背后的安全问题: 机遇与挑战[J]. 信息安全研究, 2020, 6(7): 634-644. GAO W, XIAO Z H, ZHU Y L. The security problems of the DeepFake technology: oppotunities and challenges[J]. Journal of Information Security Research, 2020, 6(7): 634-644. [3] DOLHANSKY B, BITTON J, PFLAUM B, et al. The deepfake detection challenge (DFDC) dataset[J]. arXiv:2006.07397, 2020. [4] RÖSSLER A, COZZOLINO D, VERDOLIVA L, et al. Face-Forensics++: learning to detect manipulated facial images[C]//Proceedings of the 2019 IEEE/CVF International Con-ference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Pis-cataway: IEEE, 2019: 1-11. [5] LI Y Z, YANG X, SUN P, et al. Celeb-DF: a large-scale cha-llenging dataset for deepfake forensics[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 3204-3213. [6] LI Y, CHANG M C, LYU S. In ICTU Oculi: exposing AI generated fake face videos by detecting eye blinking[J]. arXiv:1806.02877, 2018. [7] KORSHUNOV P, MARCEL S. DeepFakes: a new threat to face recognition? Assessment and detection[J]. arXiv:1812.08685, 2018. [8] THIES J, ZOLLHOFER M, STAMMINGER M, et al. Face2-Face: real-time face capture and reenactment of RGB videos[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 26-30, 2016. Washington: IEEE Computer Society, 2016: 2387-2395. [9] THIES J, ZOLLHÖFER M, NIEßNER M. Deferred neural rendering: image synthesis using neural textures[J]. ACM Transactions on Graphics, 2019, 38(4): 66. [10] ISOLA P, ZHU J Y, ZHOU T, et al. Image-to-image trans-lation with conditional adversarial networks[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pat-tern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 1125-1134. [11] LI L, BAO J, YANG H, et al. FaceShifter: towards high fi-delity and occlusion aware face swapping[J]. arXiv:1912.13457, 2019. [12] JIANG L M, LI R, WU W, et al. DeeperForensics-1.0: a large-scale dataset for real-world face forgery detection[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 2886-2895. [13] ZHOU T, WANG W, LIANG Z, et al. Face forensics in the wild[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Jun 19-25, 2021. Piscataway: IEEE, 2021: 5778-5788. [14] PEROV I, GAO D, CHERVONIY N, et al. DeepFaceLab: integrated, flexible and extensible face-swapping framework[J]. arXiv:2005.05535, 2020. [15] NIRKIN Y, KELLER Y, HASSNER T. FSGAN: subject ag-nostic face swapping and reenactment[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 7184-7193. [16] KWON P, YOU J, NAM G, et al. KoDF: a large-scale Ko-rean deepfake detection dataset[J]. arXiv:2103.10094, 2021. [17] SIAROHIN A, LATHUILIèRE S, TULYAKOV S, et al. First order motion model for image animation[C]//Proceedings of the Annual Conference on Neural Information Proces-sing Systems 2019, Vancouver, Dec 8-14, 2019: 7135-7145. [18] YI R, YE Z, ZHANG J, et al. Audio-driven talking face video generation with learning-based personalized head pose[J]. arXiv:2002.10137, 2020. [19] PRAJWAL K R, MUKHOPADHYAY R, NAMBOODIRI V P, et al. A lip sync expert is all you need for speech to lip generation in the wild[C]//Proceedings of the 28th ACM International Conference on Multimedia, Seattle, Oct 12-16, 2020. New York: ACM, 2020: 484-492. [20] DONG X Y, BAO J M, CHEN D D, et al. Identity-driven deepfake detection[J]. arXiv:2012.03930, 2020. [21] NAGRANI A, CHUNG J S, XIE W D, et al. VoxCeleb: large-scale speaker verification in the wild[J]. Computer Speech & Language, 2020, 60: 101027. [22] ZI B J, CHANG M H, CHEN J J, et al. WildDeepfake: a challenging real-world dataset for deepfake detection[C]//Pro-ceedings of the 28th ACM International Conference on Multi-media, Seattle, Oct 12-16, 2020. New York: ACM, 2020: 2382-2390. [23] LI X, LANG Y, CHEN Y, et al. Sharp multiple instance lear-ning for deepfake video detection[C]//Proceedings of the 28th ACM International Conference on Multimedia, Seattle, Oct 12-16, 2020. New York: ACM, 2020: 1864-1872. [24] LE T N, NGUYEN H H, YAMAGISHI J, et al. Open-Forensics: large-scale challenging dataset for multi-face forgery detection and segmentation in-the-wild[J]. arXiv:2107.14480, 2021. [25] AFCHAR D, NOZICK V, YAMAGISHI J, et al. MesoNet: a compact facial video forgery detection network[C]//Pro-ceedings of the 2018 IEEE International Workshop on Infor-mation Forensics and Security, Hong Kong, China, Dec 11-13,?2018. Piscataway: IEEE, 2018: 1-7. [26] DE LIMA O, FRANKLIN S, BASU S, et al. Deepfake de-tection using spatiotemporal convolutional networks[J]. arXiv: 2006.14749, 2020. [27] LI Y, LYU S. Exposing deepfake videos by detecting face warping artifacts[J]. arXiv:1811.00656, 2018. [28] GUARNERA L, GIUDICE O, BATTIATO S. Deepfake de-tection by analyzing convolutional traces[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Seattle, Jun 14-19, 2020. Pis-cataway: IEEE, 2020: 2841-2850. [29] WANG C R, DENG W H. Representative forgery mining for fake face detection[C]//Proceedings of the 2021 IEEE Conference on Computer Vision and Pattern Recognition, Jun 19-25, 2021. Piscataway: IEEE, 2021: 14923-14932. [30] BONETTINI N, CANNAS E D, MANDELLI S, et al. Vi-deo face manipulation detection through ensemble of CNNs[C]//Proceedings of the 25th International Conference on Pattern Recognition, Milan, Jan 10-15, 2021. Piscataway: IEEE, 2021: 5012-5019. [31] WODAJO D, ATNAFU S. Deepfake video detection using convolutional vision transformer[J]. arXiv:2102.11126, 2021. [32] LIU Z, QI X, TORR P H S. Global texture enhancement for fake face detection in the wild[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Re-cognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 8060-8069. [33] COCCOMINI D A, MESSINA N, GENNARO C, et al. Com-bining EfficientNet and vision transformers for video deep-fake detection[C]//LNCS 13233: Proceedings of the 21st In-ternational Conference on Image Analysis and Processing,Lecce, May 23-27, 2022. Cham: Springer, 2022: 219-229. [34] 暴雨轩, 芦天亮, 杜彦辉, 等. 基于i_ResNet34模型和数据增强的深度伪造视频检测方法[J]. 计算机科学, 2021, 48(7): 77-85. BAO Y X, LU T L, DU Y H, et al. Deepfake video detec-tion method based on i_ResNet34 model and data augmen-tation[J]. Computer Science, 2021, 48(7): 77-85. [35] NGUYEN H H, YAMAGISHI J, ECHIZEN I. Capsule-Forensics: using capsule networks to detect forged images and videos[C]//Proceedings of the 2019 IEEE International Conference on Acoustics, Speech and Signal Processing, Brighton, May 12-17,?2019. Piscataway: IEEE, 2019: 2307-2311. [36] 耿鹏志, 唐云祁, 樊红兴, 等. 基于CutMix算法和改进Xcep-tion网络的深度伪造检测研究[J]. 激光与光电子学进展, 2022, 59(16): 348-355. GENG P Z, TANG Y Q, FAN H X, et al. Deep forgery detection using CutMix algorithm and improved Xception network[J]. Laser & Optoelectronics Progress, 2022, 59(16): 348-355. [37] 张时润, 彭勃, 王伟, 等. 基于空洞卷积和注意力机制的深度伪造检测[J]. 现代电子技术, 2022, 45(5): 42-48. ZHANG S R, PENG B, WANG W, et al. Deepfake detec-tion based on dilated convolution and attention mechanism[J]. Modern Electronics Technique, 2022, 45(5): 42-48. [38] 朱新同, 唐云祁, 耿鹏志. 基于特征融合的篡改与深度伪造图像检测算法[J]. 信息网络安全, 2021, 21(8): 70-81. ZHU X T, TANG Y Q, GENG P Z. Detection algorithm of tamper and deepfake image based on feature fusion[J]. Net-info Security, 2021, 21(8): 70-81. [39] NATARAJ L, MOHAMMED T M, MANJUNATH B S, et al. Detecting GAN generated fake images using co-occurrence matrices[J]. Electronic Imaging, 2019(5): 532. [40] TAN M, LE Q. EfficientNet: rethinking model scaling for con-volutional neural networks[C]//Proceedings of the 36th Inter-national Conference on Machine Learning, Long Beach, Jun 9-15, 2019: 6105-6114. [41] CHEN C F R, FAN Q, PANDA R. CrossViT: cross-attention multi-scale vision transformer for image classification[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Aug 28, 2021. Piscataway: IEEE, 2021: 357-366. [42] ZHAO H, ZHOU W, CHEN D, et al. Multi-attentional deep-fake detection[J]. arXiv:2103.02406, 2021. [43] GUO Z, YANG G, CHEN J, et al. Fake face detection via adaptive manipulation traces extraction network[J]. Computer Vision and Image Understanding, 2021, 204(11): 103170. [44] ZHOU P, HAN X, MORARIU V I, et al. Two-stream neural networks for tampered face detection[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, Jul 21-26, 2017. Washing-ton: IEEE Computer Society, 2017: 1831-1839. [45] ZHU X, WANG H, FEI H, et al. Face forgery detection by 3D decomposition[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Jun 19-25, 2021. Piscataway: IEEE, 2021: 2929-2939. [46] LIU S, LIAN Z, GU S, et al. Block shuffling learning for deepfake detection[J]. arXiv:2202.02819, 2022. [47] CHEN L, ZHANG Y, SONG Y, et al. Self-supervised learning of adversarial example: towards good generalizations for deepfake detection[J]. arXiv:2203.12208, 2022. [48] ZHAO T C, XU X, XU M Z, et al. Learning self-consistency for deepfake detection[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Oct 10-17, 2021. Piscataway: IEEE, 2021: 15023-15033. [49] GU Q, CHEN S, YAO T, et al. Exploiting fine-grained face forgery clues via progressive enhancement learning[J]. arXiv: 2112.13977, 2021. [50] DURALL R, KEUPER M, PFREUNDT F J, et al. Unmas-king deepfakes with simple features[J]. arXiv:1911.00686, 2019. [51] QIAN Y, YIN G, SHENG L Z, et al. Thinking in frequency: face forgery detection by mining frequency-aware clues[J]. arXiv:2007.09355, 2020. [52] ZHANG X, KARAMAN S, CHANG S F. Detecting and simulating artifacts in GAN fake images[C]//Proceedings of the 2019 IEEE International Workshop on Information Forensics and Security, Delft, Dec 9-12, 2019. Piscataway:IEEE, 2019: 1-6. [53] FRANK J, EISENHOFER T, SCH?NHERR L, et al. Lever-aging frequency analysis for deep fake image recognition[C]//Proceedings of the 37th International Conference on Machine Learning, Jul 13-18, 2020: 3247-3258. [54] LUO Y C, ZHANG Y, YAN J C, et al. Generalizing face forgery detection with high-frequency features[C]//Procee-dings of the 2021 IEEE/CVF Conference on Computer Vi-sion and Pattern Recognition, Jun 19-25, 2021. Piscataway: IEEE, 2021: 16317-16326. [55] LI J, XIE H, LI J, et al. Frequency-aware discriminative feature learning supervised by single-center loss for face forgery detection[J]. arXiv:2103.09096, 2021. [56] LIU H G, LI X D, ZHOU W B, et al. Spatial-phase shallow learning: rethinking face forgery detection in frequency domain[J]. arXiv:2103.01856, 2021. [57] WANG J, WU Z, CHEN J, et al. M2TR: multi-modal multi-scale transformers for deepfake detection[J]. arXiv:2104.09770, 2021. [58] CHEN S, YAO T P, CHEN Y, et al. Local relation learning for face forgery detection[C]//Proceedings of the 35th AAAI Conference on Artificial Intelligence, the 33rd Conference on Innovative Applications of Artificial Intelligence, the 11th Symposium on Educational Advances in Artificial In-telligence, Feb 2-9, 2021. Menlo Park: AAAI, 2021: 1081-1088. [59] LI L Z, BAO J, ZHANG T, et al. Face X-Ray for more general face forgery detection[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Re-cognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 5000-5009. [60] NIRKIN Y, WOLF L, KELLER Y, et al. Deepfake detection based on discrepancies between faces and their context[J]. IEEE Transactions on Pattern Analysis and Machine Intelli-gence, 2022, 44(10): 6111-6121. [61] SUN K, YAO T, CHEN S, et al. Dual contrastive learning for general face forgery detection[J]. arXiv:2112.13522, 2021. [62] SABIR E, CHENG J X, JAISWAL A, et al. Recurrent con-volutional strategies for face manipulation detection in videos[C]//Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition Workshops, Long Beach,Jun 16-20, 2019. Piscataway: IEEE, 2019: 80-87. [63] GüERA D, DELP E J. Deepfake video detection using recurrent neural networks[C]//Proceedings of the 15th IEEE International Conference on Advanced Video and Signal Based Surveillance, Auckland, Nov 27-30, 2018. Piscataway: IEEE, 2018: 1-6. [64] 邢豪. 基于时空特征的深度伪造视频篡改检测[D]. 太原: 太原理工大学, 2021. XING H. Deepfake video detection based on spatial-temporal features[D]. Taiyuan: Taiyuan University of Technology, 2021. [65] CHINTHA A, THAI B, SOHRAWARDI S J, et al. Recurrent convolutional structures for audio spoof and video deepfake detection[J]. IEEE Journal of Selected Topics in Signal Pro-cessing, 2020, 14(5): 1024-1037. [66] CHOLLET F. Xception: deep learning with depthwise separ-able convolutions[C]//Proceedings of the 2017 IEEE Con-ference on Computer Vision and Pattern Recognition, Ho-nolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 1800-1807. [67] FEI J, XIA Z, YU P, et al. Exposing AI-generated videos with motion magnification[J]. Multimedia Tools and Appli-cations, 2021, 80(20): 30789-30802. [68] WU X, XIE Z, GAO Y T, et al. SSTNet: detecting manipu-lated faces through spatial, steganalysis and temporal features[C]//Proceedings of the 2020 IEEE International Conference on Acoustics, Speech and Signal Processing, Barcelona,May 4-8, 2020. Piscataway: IEEE, 2020: 2952-2956. [69] AMERINI I, CALDELLI R. Exploiting prediction error in-consistencies through LSTM-based classifiers to detect deep-fake videos[C]//Proceedings of the 2020 ACM Workshop on Information Hiding and Multimedia Security, Denver,Jun 22-24, 2020. New York: ACM, 2020: 97-102. [70] MASI I, KILLEKAR A, MASCARENHAS R M, et al. Two-branch recurrent network for isolating deepfakes in videos[C]//LNCS 12352: Proceedings of the 16th European Conference on Computer Vision, Aug 23-28, 2020. Cham:Springer, 2020: 667-684. [71] MONTSERRAT D M, HAO H X, YARLAGADDA S K, et al. Deepfakes detection with automatic face weighting[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 2851-2859. [72] 邢豪, 李明. 基于3D CNNS的深度伪造视频篡改检测[J]. 计算机科学, 2021, 48(7): 86-92. XING H, LI M. Deepfake video detection based on 3D convolutional nerual network[J]. Computer Science, 2021, 48(7): 86-92. [73] ZHANG D C, LI C Y, LIN F Z, et al. Detecting deepfake videos with temporal dropout 3DCNN[C]//Proceedings of the 30th International Joint Conference on Artificial Intelli-gence, Aug 19-26, 2021: 1288-1294. [74] ZHENG Y L, BAO J M, CHEN D, et al. Exploring temporal coherence for more general video face forgery detection[J]. arXiv:2108.06693, 2021. [75] GU Z H, CHEN Y, YAO T P, et al. Spatiotemporal inconsis-tency learning for deepfake video detection[C]//Proceedings of the 29th ACM International Conference on Multimedia,Chengdu, Oct 20-24, 2021. New York: ACM, 2021: 3473-3481. [76] GU Z H, CHEN Y, YAO T P, et al. Delving into the local: dynamic inconsistency learning for deepfake video detection[C]//Proceedings of the 36th AAAI Conference on Artificial Intelligence, the 34th Conference on Innovative Applica-tions of Artificial Intelligence, the 12th Symposium on Edu-cational Advances in Artificial Intelligence, Feb 22-Mar 1, 2022. Menlo Park: AAAI, 2022: 744-752. [77] AMERINI I, GALTERI L, CALDELLI R, et al. Deepfake video detection through optical flow based CNN[C]//Pro-ceedings of the 2019 IEEE/CVF International Conference on Computer Vision Workshops, Seoul, Oct 27-28, 2019. Piscataway: IEEE, 2019: 1205-1207. [78] SUN D, YANG X, LIU M Y, et al. PWC-Net: CNNs for op-tical flow using pyramid, warping, and cost volume[C]//Pro-ceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Washington: IEEE Computer Society, 2018: 8934-8943. [79] CHINTHA A, RAO A, SOHRAWARDI S, et al. Leveraging edges and optical flow on faces for deepfake detection[C]//Proceedings of the 2020 IEEE International Joint Conference on Biometrics, Houston, Sep 28-Oct 1, 2020. Piscataway: IEEE, 2020: 1-10. [80] LOPES A T, DE AGUIAR E, DE SOUZA A F, et al. Facial expression recognition with convolutional neural networks: coping with few data and the training sample order[J]. Pat-tern Recognition, 2017, 61: 610-628. [81] DONG X, SI W, HUANG W. ECG-based identity recogni-tion via deterministic learning[J]. Biotechnology & Biotech-nological Equipment, 2018, 32(3): 769-777. [82] AGARWAL S, FARID H, GU Y M, et al. Protecting world leaders against deep fakes[C]//Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition Workshops, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 38-45. [83] AGARWAL S, FARID H, EL-GAALY T, et al. Detecting deep-fake videos from appearance and behavior[C]//Procee-dings of the 12th IEEE International Workshop on Infor-mation Forensics and Security, New York, Dec 6-11, 2020.Piscataway: IEEE, 2020: 1-6. [84] WILES O, KOEPKE A S, ZISSERMAN A. Self-supervised learning of a facial attribute embedding from video[J]. arXiv: 1808.06882, 2018. [85] COZZOLINO D, R?SSLER A, THIES J, et al. ID-Reveal: identity-aware deepfake video detection[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Oct 10-17, 2021. Piscataway: IEEE, 2021: 15088-15097. [86] DONG X Y, BAO J M, CHEN D D, et al. Protecting celebrities with identity consistency transformer[J]. arXiv:2203.01318, 2022. [87] SUN Z K, HAN Y J, HUA Z Y, et al. Improving the effi-ciency and robustness of deepfakes detection through pre-cise geometric features[C]//Proceedings of the 2021 IEEE Conference on Computer Vision and Pattern Recognition, Jun 19-25, 2021. Piscataway: IEEE, 2021: 3609-3618. [88] CIFTCI U A, DEMIR I, YIN L. FakeCatcher: detection of synthetic portrait videos using biological signals[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020. DOI: 10.1109/TPAMI.2020.3009287. [89] YANG X, LI Y Z, LYU S. Exposing deep fakes using in-consistent head poses[C]//Proceedings of the 2019 IEEE In-ternational Conference on Acoustics, Speech and Signal Pro-cessing, Brighton, May 12-17,?2019. Piscataway: IEEE, 2019: 8261-8265. [90] QI H, GUO Q, XU J F, et al. DeepRhythm: exposing deep-fakes with attentional visual heartbeat rhythms[C]//Procee-dings of the 28th ACM International Conference on Multi-media, Seattle, Oct 12-16, 2020. New York: ACM, 2020: 4318-4327. [91] NIU X, SHAN S, HAN H, et al. RhythmNet: end-to-end heart rate estimation from face via spatial-temporal representation[J]. IEEE Transactions on Image Processing, 2019, 29: 2409-2423. [92] CIFTCI U A, DEMIR I, YIN L J. How do the hearts of deep fakes beat? Deep fake source detection via interpreting resi-duals with biological signals[C]//Proceedings of the 2020 IEEE International Joint Conference on Biometrics, Houston, Sep 28-Oct 1, 2020. Piscataway: IEEE, 2020: 1-10. [93] NGUYEN H M, DERAKHSHANI R. Eyebrow recognition for identifying deepfake videos[C]//Proceedings of the 19th International Conference of the Biometrics Special Interest Group, Sep 16-18, 2020: 199-206. [94] MATERN F, RIESS C, STAMMINGER M. Exploiting visual artifacts to expose deepfakes and face manipulations[C]//Proceedings of the 2019 IEEE Winter Applications of Computer Vision Workshops, Waikoloa Village, Jan 7-11, 2019. Piscataway: IEEE, 2019: 83-92. [95] ZHOU Y P, LIM S N. Joint audio-visual deepfake detection[C]//Proceedings of the 2021 IEEE/CVF International Con-ference on Computer Vision, Montreal, Oct 10-17, 2021. Piscataway: IEEE, 2021: 14780-14789. [96] WANG G, ZHANG P, XIE L, et al. An audio-visual atten-tion based multimodal network for fake talking face videos detection[J]. arXiv:2203.05178, 2022. [97] CHUGH K, GUPTA P, DHALL A, et al. Not made for each other-audio-visual dissonance-based deepfake detection and localization[C]//Proceedings of the 28th ACM International Conference on Multimedia, Seattle, Oct 12-16, 2020. New York: ACM, 2020: 439-447. [98] HALIASSOS A, VOUGIOUKAS K, PETRIDIS S, et al. Lips don’t lie: a generalisable and robust approach to face forgery detection[C]//Proceedings of the 2021 IEEE Conference on Computer Vision and Pattern Recognition, Jun 19-25, 2021. Piscataway: IEEE, 2021: 5039-5049. [99] CHUNG J S, ZISSERMAN A. Lip reading in the wild[C]//Proceedings of the 13th Asian Conference on Computer Vi-sion, Taipei, China, Nov 20-24, 2016. Cham: Springer, 2016: 87-103. [100] ZHAO H, ZHOU W, CHEN D, et al. Self-supervised trans-former for deepfake detection[J]. arXiv:2203.01265, 2022. [101] HALIASSOS A, MIRA R, PETRIDIS S, et al. Leveraging real talking faces via self-supervision for robust forgery detection[J]. arXiv:2201.07131, 2022. [102] GRILL J B, STRUB F, ALTCHé F, et al. Bootstrap your own latent—a new approach to self-supervised learning[C]//Advances in Neural Information Processing Systems, 2020, 33: 21271-21284. [103] LIN J, ZHOU W, LIU H, et al. Lip forgery video detec-tion via multi-phoneme Selection[C]//Proceedings of the 2021 International Workshop on Safety & Secruity of Deep Learning, New York, Jun 7-11, 2021: 1-8. [104] AGARWAL S, FARID H, FRIED O, et al. Detecting deep-fake videos from phoneme-viseme mismatches[C]//Procee-dings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 14-19, 2020.Piscataway: IEEE, 2020: 2814-2822. [105] CHENG H, GUO Y, WANG T, et al. Voice-face homo-geneity tells deepfake[J]. arXiv:2203.02195, 2022. [106] AGARWAL S, FARID H. Detecting deep-fake videos from aural and oral dynamics[C]//Proceedings of the 2021 IEEE Conference on Computer Vision and Pattern Recognition Workshops, Jun 19-25, 2021. Piscataway: IEEE, 2021: 981-989. [107] MITTAL T, BHATTACHARYA U, CHANDRA R, et al. Emotions don’t lie: an audio-visual deepfake detection me-thod using affective cues[J]. arXiv:2003.06711, 2020. [108] ZADEH A, LIANG P P, MAZUMDER N, et al. Memory fusion network for multi-view sequential learning[C]//Pro-ceedings of the 32nd AAAI Conference on Artificial In-telligence, the 30th Innovative Applications of Artificial Intelligence, and the 8th AAAI Symposium on Educa-tional Advances in Artificial Intelligence, New Orleans, Feb 2-7, 2018. Menlo Park: AAAI, 2018: 5634-5641. [109] COX I, MILLER M, BLOOM J, et al. Digital watermarking and steganography[M]. San Mateo: Morgan Kaufmann, 2007. [110] AKHTAR N, MIAN A. Threat of adversarial attacks on deep learning in computer vision: a survey[J]. IEEE Access, 2018, 6: 14410-14430. [111] HUANG Q, ZHANG J, ZHOU W, et al. Initiative defense against facial manipulation[J]. arXiv:2112.10098, 2021. [112] KIM C, REN Y, YANG Y. Decentralized attribution of generative models[J]. arXiv:2010.13974, 2021. [113] YU N, SKRIPNIUK V, ABDELNABI S, et al. Artificial GAN fingerprints: rooting deepfake attribution in training data[J]. arXiv:2007.08457, 2007. [114] MA C, GU Y, GONG C, et al. Unsupervised video hashing via deep neural network[J]. Neural Processing Letters, 2018, 47(3): 877-890. [115] LI J, ZHANG H, WAN W, et al. Two-class 3D-CNN classi-fiers combination for video copy detection[J]. Multimedia Tools and Applications, 2020, 79(7): 4749-4761. [116] TANG W, WO Y, HAN G. Geometrically robust video ha-shing based on ST-PCT for video copy detection[J]. Multi-media Tools and Applications, 2019, 78(15): 21999-22022. [117] KOOPMAN M, RODRIGUEZ A M, GERADTS Z. Detection of deepfake video manipulation[C]//Proceedings of the 20th Irish Machine Vision and Image Processing Conference, Belfast, Aug 29-31, 2018: 133-136. [118] HUANG H, WANG Y T, CHEN Z Y, et al. CMUA-Water-mark: a cross-model universal adversarial watermark for combating deepfakes[J]. arXiv:2105.10872, 2021. [119] HASAN H R, SALAH K. Combating deepfake videos using blockchain and smart contracts[J]. IEEE Access, 2019, 7: 41596-41606. [120] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: transformers for image recognition at scale[J]. arXiv:2010.11929, 2020. [121] LIU Z, LIN Y T, CAO Y, et al. Swin transformer: hierar-chical vision transformer using shifted windows[J]. arXiv:2103.14030, 2021. [122] HEO Y J, CHOI Y J, LEE Y W, et al. Deepfake detection scheme based on vision transformer and distillation[J].arXiv:2104.01353, 2021. [123] JEON H, BANG Y, WOO S S. FDFtNet: facing off fake images using fake detection fine-tuning network[C]//Pro-ceedings of the 35th IFIP TC 11 International Conference on ICT Systems Security and Privacy Protection, Maribor,Sep 21-23, 2020. Cham: Springer, 2020: 416-430. [124] KHORMALI A, YUAN J S. DFDT: an end-to-end deep-fake detection framework using vision transformer[J]. App-lied Sciences, 2022, 12(6): 2953. [125] KHAN S A, DAI H. Video transformer for deepfake detec-tion with incremental learning[C]//Proceedings of the 29th ACM International Conference on Multimedia, Chengdu, Oct 20-24, 2021. New York: ACM, 2021: 1821-1828. [126] RAMACHANDRAN S, NADIMPALLI A V, RATTANI A. An experimental evaluation on deepfake detection using deep face recognition[J]. arXiv:2110.01640, 2021. [127] SUN K, LIU H, YE Q X, et al. Domain general face for-gery detection by learning to weight[C]//Proceedings of the 35th AAAI Conference on Artificial Intelligence, the 33rd Conference on Innovative Applications of Artificial Intelligence, the 11th Symposium on Educational Advances in Artificial Intelligence, Feb 2-9, 2021. Menlo Park: AAAI,2021: 2638-2646. [128] KHORMALI A, YUAN J S. ADD: attention-based deep-fake detection approach[J]. Big Data and Cognitive Com-puting, 2021, 5(4): 49. [129] DANG H, LIU F, STEHOUWER J, et al. On the detection of digital face manipulation[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 5781-5790. [130] NGUYEN H H, FANG F, YAMAGISHI J, et al. Multi-task learning for detecting and segmenting manipulated facial images and videos[J]. arXiv:1906.06876, 2019. [131] HSU C C, ZHUANG Y X, LEE C Y. Deep fake image detection based on pairwise learning[J]. Applied Sciences, 2020, 10(1): 370. [132] FERNANDO T, FOOKES C, DENMAN S, et al. Exploiting human social cognition for the detection of fake and frau-dulent faces via memory networks[J]. arXiv:1911.07844, 2019. [133] DU M, PENTYALA S, LI Y, et al. Towards generalizable deepfake detection with locality-aware autoencoder[C]//Proceedings of the 29th ACM International Conference on Information and Knowledge Management, Ireland, Oct 19-23, 2020.?New York: ACM, 2020: 325-334. [134] GUO Z H, YANG G B, CHEN J Y, et al. Fake face detec-tion via adaptive residuals extraction network[J]. arXiv:2005.04945, 2020. |
[1] | TONG Hang, YANG Yan, JIANG Yongquan. Multi-head Self-attention Neural Network for Detecting EEG Epilepsy [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(2): 442-452. |
[2] | WANG Yan, LYU Yanping. Hybrid Deep CNN-Attention for Hyperspectral Image Classification [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(2): 385-395. |
[3] | LI Mingyang, CHEN Wei, WANG Shanshan, LI Jie, TIAN Zijian, ZHANG Fan. Survey on 3D Reconstruction Methods Based on Visual Deep Learning [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(2): 279-302. |
[4] | WU Xin, XU Hong, LIN Zhuosheng, LI Shengke, LIU Huilin, FENG Yue. Review of Deep Learning in Classification of Tongue Image [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(2): 303-323. |
[5] | WANG Yingjie, ZHANG Chengye, BAI Fengbo, WANG Zumin, JI Changqing. Review of Chinese Named Entity Recognition Research [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(2): 324-341. |
[6] | WANG Shichen, HUANG Kai, CHEN Zhigang, ZHANG Wendong. Survey on 3D Human Pose Estimation of Deep Learning [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(1): 74-87. |
[7] | LIANG Jiali, HUA Baojian, LYU Yashuai, SU Zhenyu. Loop Invariant Code Motion Algorithm for Deep Learning Operators [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(1): 127-139. |
[8] | WANG Jianzhe, WU Qin. Salient Object Detection Based on Coordinate Attention Feature Pyramid [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(1): 154-165. |
[9] | YANG Caidong, LI Chengyang, LI Zhongbo, XIE Yongqiang, SUN Fangwei, QI Jin. Review of Image Super-resolution Reconstruction Algorithms Based on Deep Learning [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(9): 1990-2010. |
[10] | ZHANG Xiangping, LIU Jianxun. Overview of Deep Learning-Based Code Representation and Its Applications [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(9): 2011-2029. |
[11] | LI Dongmei, LUO Sisi, ZHANG Xiaoping, XU Fu. Review on Named Entity Recognition [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(9): 1954-1968. |
[12] | REN Ning, FU Yan, WU Yanxia, LIANG Pengju, HAN Xi. Review of Research on Imbalance Problem in Deep Learning Applied to Object Detection [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(9): 1933-1953. |
[13] | LYU Xiaoqi, JI Ke, CHEN Zhenxiang, SUN Runyuan, MA Kun, WU Jun, LI Yidong. Expert Recommendation Algorithm Combining Attention and Recurrent Neural Network [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(9): 2068-2077. |
[14] | AN Fengping, LI Xiaowei, CAO Xiang. Medical Image Classification Algorithm Based on Weight Initialization-Sliding Window CNN [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(8): 1885-1897. |
[15] | ZENG Fanzhi, XU Luqian, ZHOU Yan, ZHOU Yuexia, LIAO Junwei. Review of Knowledge Tracing Model for Intelligent Education [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(8): 1742-1763. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/