Journal of Frontiers of Computer Science and Technology ›› 2023, Vol. 17 ›› Issue (1): 154-165.DOI: 10.3778/j.issn.1673-9418.2111121
• Graphics·Image • Previous Articles Next Articles
WANG Jianzhe, WU Qin
Online:
2023-01-01
Published:
2023-01-01
王剑哲,吴秦
WANG Jianzhe, WU Qin. Salient Object Detection Based on Coordinate Attention Feature Pyramid[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(1): 154-165.
王剑哲, 吴秦. 坐标注意力特征金字塔的显著性目标检测算法[J]. 计算机科学与探索, 2023, 17(1): 154-165.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2111121
[1] FLORES C F, GONZALEZ-GARCIA A, VAN DE WEIJER J, et al. Saliency for fine-grained object recognition in domains with scarce training data[J]. Pattern Recognition, 2019, 94: 62-73. [2] WEI Y C, FENG J S, LIANG X D, et al. Object region mining with adversarial erasing: a simple classification to semantic segmentation approach[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 6488-6496. [3] REN Z, GAO S, CHIA L T, et al. Region-based saliency detection and its application in object recognition[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2013, 24(5): 769-779. [4] LIANG P, PANG Y, LIAO C, et al. Adaptive objectness for object tracking[J]. IEEE Signal Processing Letters, 2016, 23(7): 949-953. [5] 史彩娟, 张卫明, 陈厚儒, 等. 基于深度学习的显著性目标检测综述[J]. 计算机科学与探索, 2021, 15(2): 219-232. SHI C J, ZHANG W M, CHEN H R, et al. Survey of salient object detection based on deep learning[J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(2): 219-232. [6] LONG J, SHELLHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, Jun 7-12, 2015. Washington: IEEE Computer Society, 2015: 3431-3440. [7] RONNEBERGER O, FICHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//LNCS 9351: Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Oct 5-9, 2015. Cham: Springer, 2015: 234-241. [8] BADRINARAYANAN V, KENDALL A, CIPOLLA R. SegNet: a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481-2495. [9] ZHANG J, DAI Y C, PORIKLI F, et al. Multi-scale salient object detection with pyramid spatial pooling[C]//Preceedings of the 2017 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, Kuala Lumpur, Dec 12-15, 2017. Piscataway: IEEE, 2017: 1286-1291. [10] 张守东, 杨明, 胡太. 基于多特征融合的显著性目标检测算法[J]. 计算机科学与探索, 2019, 13(5): 834-845. ZHANG S D, YANG M, HU T. Salient object algorithm based on multi-feature fusion[J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(5): 834-845. [11] LIU J J, HOU Q B, CHENG M M, et al. A simple pooling-based design for real-time salient object detection[C]//Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 3917-3926. [12] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Washington: IEEE Computer Society, 2018: 7132-7141. [13] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//LNCS 11211: Proceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Cham: Springer, 2018: 3-19. [14] ZHAO T, WU X Q. Pyramid feature attention network for saliency detection[C]//Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 3085-3094. [15] HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design[C]//Proceedings of the 2021 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 13713-13722. [16] ZHOU H J, XIE X H, LAI J H, et al. Interactive two-stream decoder for accurate and fast saliency detection[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 9141-9150. [17] SU J M, LI J, XIA C Q, et al. Selectivity or invariance: boundary-aware salient object detection[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 3798-3807. [18] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer Society, 2016: 770-778. [19] SHI J P, YAN Q, XU L, et al. Hierarchical image saliency detection on extended CSSD[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(4): 717-729. [20] LI Y, HOU X D, KOCH C, et al. The secrets of salient object segmentation[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, Jun 23-28, 2014. Washington: IEEE Computer Society, 2014: 280-287. [21] LI G B, YU Y Z. Deep contrast learning for salient object detection[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer Society, 2016: 478-487. [22] WANG L Y, LU H C, WANG Y F, et al. Learning to detect salient objects with image-level supervision[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 3796-3805. [23] YANG C, ZHANG L H, LU H C, et al. Saliency detection via graph-based manifold ranking[C]//Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition, Portland, Jun 23-28, 2013. Washington: IEEE Computer Society, 2013: 3166-3173. [24] EVERINGHAM M, ESLAMI S M A, VAN GOOL L, et al. The pascal visual object classes challenge: a retrospective[J]. International Journal of Computer Vision, 2015, 111(1): 98-136. [25] DENG J, DONG W, SOCHER R, et al. ImageNet: a large-scale hierarchical image database[C]//Proceedings of the 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Miami, Jun 20-25, 2009. Washington: IEEE Computer Society, 2009: 248-255. [26] XIAO J X, HAYS J, EHINGER K A, et al. SUN database: large-scale scene recognition from abbey to zoo[C]//Proceedings of the 23rd IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, Jun 13-18, 2010. Washington: IEEE Computer Society, 2010: 3485-3492. [27] WU Q, WANG J Z, CHAI Z L, et al. Multi-scale feature aggregation and boundary awareness network for salient object detection[J]. Image and Vision Computing, 2022, 122: 104442. [28] FAN D P, CHENG M M, LIU Y, et al. Structure-measure: a new way to evaluate foreground maps[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Oct 22-29, 2017. Washington: IEEE Computer Society, 2017: 4558-4567. [29] FAN D P, GONG C G, CAO Y, et al. Enhanced-alignment measure for binary foreground map evaluation[C]//Proceedings of the 27th International Joint Conference on Artificial Intelligence, Stockholm, Jul 13-19, 2018: 698-704. [30] CHEN S H, TAN X L, WANG B, et al. Reverse attention for salient object detection[C]//LNCS 11213: Proceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Cham: Springer, 2018: 236-252. [31] DENG Z J, HU X W, ZHU L, et al. R3net: recurrent residual refinement network for saliency detection[C]//Proceedings of the 27th International Joint Conference on Artificial Intelligence, Stockholm, Jul 13-19, 2018. Amsterdam: Elsevier, 2018: 684-690. [32] WANG W G, SHEN J B, CHENG M M, et al. An iterative and cooperative top-down and bottom-up inference network for salient object detection[C]//Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 5968-5977. [33] FENG M Y, LU H C, DING E R. Attentive feedback network for boundary-aware salient object detection[C]//Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 1623-1632. [34] WU Z, SU L, HUANG Q M. Cascaded partial decoder for fast and accurate salient object detection[C]//Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 3907-3916. [35] CHEN Z Y, XU Q Q, CONG R M, et al. Global context-aware progressive aggregation network for salient object detection[C]//Proceedings of the 34th AAAI Conference on Artificial Intelligence, the 32nd Innovative Applications of Artificial Intelligence Conference, the 10th AAAI Symposium on Educational Advances in Artificial Intelligence, New York, Feb 7-12, 2020. Menlo Park: AAAI, 2020: 10599-10606. [36] ZHAO X Q, PANG Y W, ZHANG L H, et al. Suppress and balance: a simple gated network for salient object detection [C]//LNCS 12347: Proceeding of the 16th European Conference on Computer Vision, Glasgow, Aug 23-28, 2020. Cham: Springer, 2020: 35-51. [37] PANG Y W, ZHAO X Q, ZHANG L H, et al. Multi-scale interactive network for salient object detection[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Menlo Park: AAAI, 2020: 9410-9419. |
[1] | TONG Hang, YANG Yan, JIANG Yongquan. Multi-head Self-attention Neural Network for Detecting EEG Epilepsy [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(2): 442-452. |
[2] | WANG Yan, LYU Yanping. Hybrid Deep CNN-Attention for Hyperspectral Image Classification [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(2): 385-395. |
[3] | LI Mingyang, CHEN Wei, WANG Shanshan, LI Jie, TIAN Zijian, ZHANG Fan. Survey on 3D Reconstruction Methods Based on Visual Deep Learning [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(2): 279-302. |
[4] | WU Xin, XU Hong, LIN Zhuosheng, LI Shengke, LIU Huilin, FENG Yue. Review of Deep Learning in Classification of Tongue Image [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(2): 303-323. |
[5] | WANG Yingjie, ZHANG Chengye, BAI Fengbo, WANG Zumin, JI Changqing. Review of Chinese Named Entity Recognition Research [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(2): 324-341. |
[6] | ZHANG Lu, LU Tianliang, DU Yanhui. Overview of Facial Deepfake Video Detection Methods [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(1): 1-26. |
[7] | WANG Shichen, HUANG Kai, CHEN Zhigang, ZHANG Wendong. Survey on 3D Human Pose Estimation of Deep Learning [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(1): 74-87. |
[8] | LIANG Jiali, HUA Baojian, LYU Yashuai, SU Zhenyu. Loop Invariant Code Motion Algorithm for Deep Learning Operators [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(1): 127-139. |
[9] | YANG Caidong, LI Chengyang, LI Zhongbo, XIE Yongqiang, SUN Fangwei, QI Jin. Review of Image Super-resolution Reconstruction Algorithms Based on Deep Learning [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(9): 1990-2010. |
[10] | ZHANG Xiangping, LIU Jianxun. Overview of Deep Learning-Based Code Representation and Its Applications [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(9): 2011-2029. |
[11] | LI Dongmei, LUO Sisi, ZHANG Xiaoping, XU Fu. Review on Named Entity Recognition [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(9): 1954-1968. |
[12] | REN Ning, FU Yan, WU Yanxia, LIANG Pengju, HAN Xi. Review of Research on Imbalance Problem in Deep Learning Applied to Object Detection [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(9): 1933-1953. |
[13] | LYU Xiaoqi, JI Ke, CHEN Zhenxiang, SUN Runyuan, MA Kun, WU Jun, LI Yidong. Expert Recommendation Algorithm Combining Attention and Recurrent Neural Network [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(9): 2068-2077. |
[14] | GONG Suming, CHEN Ying. Video Action Recognition Based on Spatio-Temporal Feature Pyramid Module [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(9): 2061-2067. |
[15] | AN Fengping, LI Xiaowei, CAO Xiang. Medical Image Classification Algorithm Based on Weight Initialization-Sliding Window CNN [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(8): 1885-1897. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/