Journal of Frontiers of Computer Science and Technology ›› 2023, Vol. 17 ›› Issue (2): 279-302.DOI: 10.3778/j.issn.1673-9418.2205054
• Frontiers·Surveys • Previous Articles Next Articles
LI Mingyang, CHEN Wei, WANG Shanshan, LI Jie, TIAN Zijian, ZHANG Fan
Online:
2023-02-01
Published:
2023-02-01
李明阳,陈伟,王珊珊,黎捷,田子建,张帆
LI Mingyang, CHEN Wei, WANG Shanshan, LI Jie, TIAN Zijian, ZHANG Fan. Survey on 3D Reconstruction Methods Based on Visual Deep Learning[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(2): 279-302.
李明阳, 陈伟, 王珊珊, 黎捷, 田子建, 张帆. 视觉深度学习的三维重建方法综述[J]. 计算机科学与探索, 2023, 17(2): 279-302.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2205054
[1] 龙霄潇, 程新景, 朱昊, 等. 三维视觉前沿进展[J]. 中国图象图形学报, 2021, 26(6): 1389-1428. LONG X X, CHENG X J, ZHU H, et al. Recent progress in 3D vision[J]. Journal of Image and Graphics, 2021, 26(6): 1389-1428. [2] 李永怀, 冯其波. 光学三维轮廓测量技术进展[J]. 激光与红外, 2005, 35(3): 143-147. LI Y H, FENG Q B. Overview of optical 3D profile measurement[J]. Laser & Infrared, 2005, 35(3): 143-147. [3] GARCIA E, DUGELAY J L, DELINGETTE H. Low cost 3D face acquisition and modeling[C]//Proceedings of the 2001 International Symposium on Information Technology, Las Vegas, Apr 2-4, 2001. Washington: IEEE Computer Society, 2001: 657-661. [4] 丁少闻, 张小虎, 于起峰, 等. 非接触式三维重建测量方法综述[J]. 激光与光电子学进展, 2017, 54(7): 27-41. DING S W, ZHANG X H, YU Q F, et al. Overview of non-contact 3D reconstruction measurement methods[J]. Laser & Optoelectronics Progress, 2017, 54(7): 27-41. [5] 孙宇阳. 基于单幅图像的三维重建技术综述[J]. 北方工业大学学报, 2011, 23(1): 9-13. SUN Y Y. A survey of 3D reconstruction based on single image[J]. Journal of North China University of Technology, 2011, 23(1): 9-13. [6] 张文明, 刘彬, 李海滨. 基于双目视觉的三维重建中特征点提取及匹配算法的研究[J]. 光学技术, 2008, 34(2): 181-185. ZHANG W M, LIU B, LI H B. Characteristic point extracts and the match algorithm based on the binocular vision in three dimensional reconstruction[J]. Optical Technique, 2008, 34(2): 181-185. [7] EIGEN D, PUHRSCH C, FERGUS R. Depth map prediction from a single image using a multi-scale deep network[J]. arXiv:1406.2283, 2014. [8] HAN X F, LAGA H, BENNAMOUN M. Image-based 3D object reconstruction: state-of-the-art and trends in the deep learning era[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(5): 1578-1604. [9] SU H, MAJI S, KALOGERAKIS E, et al. Multi-view convolutional neural networks for 3D shape recognition[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision, Santiago, Dec 7-13, 2015. Washington: IEEE Computer Society, 2015: 945-953. [10] QI C R, SU H, NIE?NER M, et al. Volumetric and multi-view CNNs for object classification on 3D data[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer Society, 2016: 5648-5656. [11] MATURANA D, SCHERER S. VoxNet: a 3D convolutional neural network for real-time object recognition[C]//Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems, Hamburg, Sep 28-Oct 2, 2015. Piscataway: IEEE, 2015: 922-928. [12] WU Z R, SONG S R, KHOSLA A, et al. 3D ShapeNets: a deep representation for volumetric shapes[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, Jun 7-12, 2015. Washington: IEEE Computer Society, 2015: 1912-1920. [13] PESTOV V. On the geometry of similarity search: dimensionality curse and concentration of measure[J]. Information Processing Letters, 2000, 73(1/2): 47-51. [14] LI Y Y, PIRK S, SU H, et al. FPNN: field probing neural networks for 3D data[C]//Proceedings of the Annual Conference on Neural Information Processing Systems 2016, Barcelona, Dec 5-10, 2016. Red Hook: Curran Associates, 2016: 307-315. [15] WANG P S, LIU Y, GUO Y X, et al. O-CNN: octree-based convolutional neural networks for 3D shape analysis[J]. ACM Transactions on Graphics, 2017, 36(4): 72. [16] QI C R, SU H, MO K C, et al. PointNet: deep learning on point sets for 3D classification and segmentation[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 77-85. [17] SINHA A, BAI J, RAMANI K. Deep learning 3D shape surfaces using geometry images[C]//LNCS 9910: Proceedings of the 14th European Conference on Computer Vision, Amsterdam, Oct 11-14, 2016. Cham: Springer, 2016: 223-240. [18] RAKOTOSAONA M J, GUERRERO P, AIGERMAN N, et al. Learning Delaunay surface elements for mesh reconstruction[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, Jun 19-25, 2021. Piscataway: IEEE, 2021: 22-31. [19] MESCHEDER L M, OECHSLE M, NIEMEYER M, et al. Occupancy networks: learning 3D reconstruction in function space[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 4460-4470. [20] ZHENG Z R, YU T, DAI Q H, et al. Deep implicit templates for 3D shape representation[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, Jun 19-25, 2021. Piscataway: IEEE, 2021: 1429-1439. [21] ERLER P, GUERRERO P, OHRHALLINGER S, et al. Points2Surf: learning implicit surfaces from point cloud patches[J]. arXiv:2007.10453, 2020. [22] GIRDHAR R, FOUHEY D F, RODRIGUEZ M, et al. Learning a predictable and generative vector representation for objects[C]//LNCS 9910: Proceedings of the 14th European Conference on Computer Vision, Amsterdam, Oct 11-14, 2016. Cham: Springer, 2016: 484-499. [23] CHOY C B, XU D F, GWAK J Y, et al. 3D-R2N2: a unified approach for single and multi-view 3D object reconstruction[C]//LNCS 9912: Proceedings of the 14th European Conference on Computer Vision, Amsterdam, Oct 11-14, 2016. Cham: Springer, 2016: 628-644. [24] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780. [25] TATARCHENKO M, DOSOVITSKIY A, BROX T. Octree generating networks: efficient convolutional architectures for high-resolution 3D outputs[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Oct 22-29, 2017. Washington: IEEE Computer Society, 2017: 2107-2115. [26] REZENDE D J, ESLAMI S M A, MOHAMED S, et al. Unsupervised learning of 3D structure from images[C]//Proceedings of the Annual Conference on Neural Information Processing Systems 2016, Barcelona, Dec 5-10, 2016. Red Hook: Curran Associates, 2016: 4997-5005 [27] STUTZ D, GEIGER A. Learning 3D shape completion from laser scan data with weak supervision[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Washington: IEEE Computer Society, 2018: 1955-1964. [28] YAN X C, YANG J M, YUMER E, et al. Perspective transformer nets: learning single-view 3D object reconstruction without 3D supervision[C]//Proceedings of the Annual Conference on Neural Information Processing Systems 2016, Barcelona, Dec 5-10, 2016. Red Hook: Curran Associates, 2016: 1696-1704. [29] WU J J, ZHANG C K, XUE T F, et al. Learning a probabilistic latent space of object shapes via 3D generative-adversarial modeling[C]//Proceedings of the Annual Conference on Neural Information Processing Systems 2016, Barcelona, Dec 5-10, 2016. Red Hook: Curran Associates 2016: 82-90. [30] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//Proceedings of the Annual Conference on Neural Information Processing Systems 2014, Montreal Dec 8-13, 2014. Red Hook: Curran Associates, 2014: 2672-2680. [31] WU J J, WANG Y F, XUE T F, et al. MarrNet: 3D shape reconstruction via 2.5 D sketches[J]. arXiv:1711.03129, 2017. [32] JI M Q, GALL J, ZHENG H T, et al. SurfaceNet: an end-to-end 3D neural network for multiview stereopsis[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Oct 22-29, 2017. Washington: IEEE Computer Society, 2017: 2326-2334. [33] KAR A, H?NE C, MALIK J. Learning a multi-view stereo machine[J]. arXiv:1708.05375, 2017. [34] 赵晨园, 李文新, 张庆熙. 双目视觉的立体匹配算法研究进展[J]. 计算机科学与探索, 2020, 14(7): 1104-1113. ZHAO C Y, LI W X, ZHANG Q X. Research and development of binocular stereo matching algorithm[J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(7): 1104-1113. [35] HUANG P H, MATZEN K, KOPF J, et al. DeepMVS: learning multi-view stereopsis[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Washington: IEEE Computer Society, 2018: 2821-2830. [36] YAO Y, LUO Z X, S LI W, et al. MVSNet: depth inference for unstructured multi-view stereo[C]//LNSC 11212: Proceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Cham: Springer, 2018: 785-801. [37] KNAPITSCH A, PARK J, ZHOU Q Y, et al. Tanks and temples: benchmarking large-scale scene reconstruction[J]. ACM Transactions on Graphics, 2017, 36(4): 78. [38] 隋婧, 金伟其. 双目立体视觉技术的实现及其进展[J]. 电子技术应用, 2004, 30(10): 4-6. SUI J, JIN W Q. Realization and progress of binocular stereo vision technology[J]. Application of Electronic Technique, 2004, 30(10): 4-6. [39] YAO Y, LUO Z X, LI S W, et al. Recurrent MVSNet for high-resolution multi-view stereo depth inference[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 5525-5534. [40] CHO K, VAN MERRI?NBOER B, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[J]. arXiv:1406.1078, 2014. [41] FAN H Q, SU H, GUIBAS L J. A point set generation network for 3D object reconstruction from a single image[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 2463-2471. [42] ACHLIOPTAS P, DIAMANTI O, MITLIAGKAS I, et al. Learning representations and generative models for 3D point clouds[C]//Proceedings of the 35th International Conference on Machine Learning, Stockholmsm?ssan, Jul 10-15, 2018: 40-49. [43] KINGMA D P, WELLING M. Auto-encoding variational Bayes[J]. arXiv:1312.6114, 2013. [44] YANG Y Q, FENG C, SHEN Y R, et al. FoldingNet: point cloud auto-encoder via deep grid deformation[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Washington: IEEE Computer Society, 2018: 206-215. [45] CHANG C C, LIN C J. LIBSVM: a library for support vector machines[J]. ACM Transactions on Intelligent Systems and Technology, 2011, 2(3): 27. [46] YANG G D, HUANG X, HAO Z K, et al. PointFlow: 3D point cloud generation with continuous normalizing flows[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 4540-4549. [47] KIMURA T, MATSUBARA T, UEHARA K. ChartPointFlow for topology-aware 3D point cloud generation[C]//Proceedings of the 29th ACM International Conference on Multimedia, Oct 20-24, 2021. New York: ACM, 2021: 1396-1404. [48] KLOKOV R, BOYER E, VERBEEK J. Discrete point flow networks for efficient point cloud generation[C]//LNCS 12368: Proceedings of the 16th European Conference on Computer Vision, Glasgow, Aug 23-28, 2020. Cham: Springer, 2020: 694-710. [49] CHEN R, HAN S F, XU J, et al. Point-based multi-view stereo network[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 1538-1547. [50] LUO K, GUAN T, JU L, et al. P-MVSNet: learning patch-wise matching confidence aggregation for multi-view stereo[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 10452-10461. [51] XIE J W, XU Y F, ZHENG Z L, et al. Generative PointNet: deep energy-based learning on unordered point sets for 3D generation, reconstruction and classification[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, Jun 19-25, 2021. Piscataway: IEEE, 2021: 14976-14985. [52] SPUREK P, WINCZOWSKI S, TABOR J, et al. Hypernetwork approach to generating point clouds[J]. arXiv:2003. 00802, 2020. [53] CAI R J, YANG G D, AVERBUCH-ELOR H, et al. Learning gradient fields for shape generation[C]//LNCS 12348: Proceedings of the 16th European Conference on Computer Vision, Glasgow, Aug 23-28, 2020. Cham: Springer, 2020: 364-381. [54] GRATHWOHL W, CHEN R T, BETTENCOURT J, et al. FFJORD: free-form continuous dynamics for scalable reversible generative models[J]. arXiv:1810.01367, 2018. [55] LUO S T, HU W. Diffusion probabilistic models for 3D point cloud generation[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, Jun 19-25, 2021. Piscataway: IEEE, 2021: 2837-2845. [56] GEYER C J. Practical Markov chain Monte Carlo[J]. Statistical Science, 1992, 7(4): 473-483. [57] GROUEIX T, FISHER M, KIM V G, et al. A Papier-Maché approach to learning 3D surface generation[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Washington: IEEE Computer Society, 2018: 216-224. [58] WANG N Y, ZHANG Y D, LI Z W, et al. Pixel2Mesh: generating 3D mesh models from single RGB images[C]//LNCS 11215: Proceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Cham: Springer, 2018: 52-67. [59] KONG C, LIN C, LUCEY S. Using locally corresponding CAD models for dense 3D reconstructions from a single image[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 5603-5611. [60] PATI Y C, REZAIIFAR R, KRISHNAPRASAD P S. Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition[C]//Proceedings of the 27th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, Nov 1-3, 1993. Piscataway: IEEE, 1993: 40-44. [61] CHEN Z Q, ZHANG H. Learning implicit fields for generative shape modeling[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 5939-5948. [62] NIEMEYER M, MESCHEDER L, OECHSLE M, et al. Differentiable volumetric rendering: learning implicit 3D representations without 3D supervision[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 3501-3512. [63] LI T M, AITTALA M, DURAND F, et al. Differentiable Monte Carlo ray tracing through edge sampling[J]. ACM Transactions on Graphics, 2018, 37(6): 222. [64] JIANG C, SUD A, MAKADIA A, et al. Local implicit grid representations for 3D scenes[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 6000-6009. [65] PROSZEWSKA M, MAZUR M, TRZCI?SKI T, et al. HyperCube: implicit field representations of voxelized 3D models[J]. arXiv:2110.05770, 2021. [66] HUANG Z T, YU Y K, XU J W, et al. PF-Net: point fractal network for 3D point cloud completion[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 7659-7667. [67] XIE H Z, YAO H X, SUN X S, et al. Pix2Vox: context-aware 3D reconstruction from single and multi-view images[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 2690-2698. [68] CHIBANE J, ALLDIECK T, PONS-MOLL G. Implicit functions in feature space for 3D shape reconstruction and completion[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 6968-6979. [69] MITRA N J, WAND M, ZHANG H, et al. Structure-aware shape processing[C]//Proceedings of the SIGGRAPH Asia 2013, Hong Kong, China, Nov 19-22, 2013. New York: ACM, 2013: 1-20. [70] LI J, XU K, CHAUDHURI S, et al. GRASS: generative recursive autoencoders for shape structures[J]. ACM Transactions on Graphics, 2017, 36(4): 52. [71] HAN X G, GAO C, YU Y Z. DeepSketch2Face: a deep learning based sketching system for 3D face and caricature modeling[J]. ACM Transactions on Graphics, 2017, 36(4): 126. [72] GAO L, YANG J, WU T, et al. SDM-NET: deep generative network for structured deformable mesh[J]. ACM Transactions on Graphics, 2019, 38(6): 243. [73] WU Z, WANG X, LIN D, et al. Structure-aware generative network for 3D-shape modeling[J]. arXiv:1808.03981, 2018. [74] SITZMANN V, ZOLLH?FER M, WETZSTEIN G. Scene representation networks: continuous 3D-structure-aware neural scene representations[J]. arXiv:1906.01618, 2019. [75] MO K, GUERRERO P, YI L, et al. StructureNet: hierarchical graph networks for 3D shape generation[J]. arXiv:1908. 00575, 2019. [76] MO K, GUERRERO P, YI L, et al. StructEdit: learning structural shape variations[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 8856-8865. [77] CHEN Z, TAGLIASACCHI A, ZHANG H. BSP-Net: generating compact meshes via binary space partitioning[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 42-51. [78] CHEN Z, ZHANG Y D, GENOVA K, et al. Multiresolution deep implicit functions for 3D shape representation[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Oct 10-17, 2021. Piscataway: IEEE, 2021: 13067-13076. [79] WU R D, ZHUANG Y X, XU K, et al. PQ-NET: a generative part Seq2Seq network for 3D shapes[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 826-835. [80] LI J, NIU C J, XU K. Learning part generation and assembly for structure-aware shape synthesis[C]//Proceedings of the 34th AAAI Conference on Artificial Intelligence, the 32nd Innovative Applications of Artificial Intelligence Conference, the 10th AAAI Symposium on Educational Advances in Artificial Intelligence, New York, Feb 7-12, 2020. Menlo Park: AAAI, 2020: 11362-11369. [81] ECKART B, YUAN W T. LIU C, et al. Self-supervised learning on 3D point clouds by learning discrete generative models[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, Jun 19-25, 2021. Piscataway: IEEE, 2021: 8248-8257. [82] ZIVKOVIC Z. Improved adaptive Gaussian mixture model for background subtraction[C]//Proceedings of the 17th International Conference on Pattern Recognition, Cambridge, Aug 23-26, 2004. Washington: IEEE Computer Society, 2004: 28-31. [83] DAI A, QI C R, NIE?NER M. Shape completion using 3D-Encoder-Predictor CNNs and shape synthesis[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 5868-5877. [84] DARABI S, SHECHTMAN E, BARNES C, et al. Image melding: combining inconsistent images using patch-based synthesis[J]. ACM Transactions on Graphics, 2012, 31(4): 82. [85] HAN X G, LI Z, HUANG H B, et al. High-resolution shape completion using deep neural networks for global structure and local geometry inference[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Oct 22-29, 2017. Washington: IEEE Computer Society, 2017: 85-93. [86] CHENG J, DONG L, LAPATA M. Long short-term memory-networks for machine reading[J]. arXiv:1601.06733, 2016. [87] YUAN W T, KHOT T, HELD D, et al. PCN: point completion network[C]//Proceedings of the 2018 International Conference on 3D Vision, Verona, Sep 5-8, 2018. Washington: IEEE Computer Society, 2018: 728-737. [88] WEN X, LI T, HAN Z, et al. Point cloud completion by skip-attention network with hierarchical folding[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 1939-1948. [89] WEN X, XIANG P, HAN Z, et al. PMP-Net: point cloud completion by learning multi-step point moving paths[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, Jun 19-25, 2021. Piscataway: IEEE, 2021: 7443-7452. [90] MITCHELL J S. Geometric shortest paths and network optimization[M]//SACK J R, URRUTIA J. Handbook of Computational Geometry. New York: Elsevier Science Inc., 2000. [91] WEN X, HAN Z, CAO Y P, et al. Cycle4Completion: unpaired point cloud completion using cycle transformation with missing region coding[C]//Proceedings of the 2021 IEEE Conference on Computer Vision and Pattern Recognition, Nashville, Jun 19-25, 2021. Piscataway: IEEE, 2021: 13080-13089. [92] PARK J J, FLORENCE P, STRAUB J, et al. DeepSDF: learning continuous signed distance functions for shape representation[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 165-174. [93] LIU S L, GUO H X, PAN H, et al. Deep implicit moving least-squares functions for 3D reconstruction[C]//Proceedings of the 2021 IEEE Conference on Computer Vision and Pattern Recognition, Nashville, Jun 19-25, 2021. Piscataway: IEEE, 2021: 1788-1797. [94] LANCASTER P, SALKAUSKAS K. Surfaces generated by moving least squares methods[J]. Mathematics of Computation, 1981, 37(155): 141-158. [95] GENOVA K, COLE F, SUD A, et al. Deep structured implicit functions[J]. arXiv:1912.06126, 2019. [96] MILDENHALL B, SRINIVASAN P P, TANCIK M, et al. NeRF: representing scenes as neural radiance fields for view synthesis[C]//LNCS 12346: Proceedings of the 16th European Conference on Computer Vision, Amsterdam, Glasgow, Aug 23-28, 2020. Cham: Springer, 2020: 405-421. [97] INNMANN M, ZOLLH?FER M, NIE?NER M, et al. Volume-Deform: real-time volumetric non-rigid reconstruction[C]//LNCS 9912: Proceedings of the 14th European Conference on Computer Vision, Amsterdam, Oct 11-14, 2016. Cham: Springer, 2016: 362-379. [98] CORONA E, PUMAROLA A, ALENYA G, et al. SMPLicit: topology-aware generative model for clothed people[C]//Proceedings of the 2021 IEEE Conference on Computer Vision and Pattern Recognition, Nashville, Jun 19-25, 2021. Piscataway: IEEE, 2021: 11875-11885. [99] SAITO S, HUANG Z, NATSUME R, et al. PIFu: pixel-aligned implicit function for high-resolution clothed human digitization[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 2304-2314. [100] BOGO F, KANAZAWA A, LASSNER C, et al. Keep it SMPL: automatic estimation of 3D human pose and shape from a single image[C]//LNCS 9909: Proceedings of the 14th European Conference on Computer Vision, Amsterdam, Oct 11-14, 2016. Cham: Springer, 2016: 561-578. [101] LOPER M, MAHMOOD N, ROMERO J, et al. SMPL: a skinned multi-person linear model[J]. ACM Transactions on Graphics, 2015, 34(6): 248. [102] SAITO S, YANG J L, MA Q L, et al. SCANimate: weakly supervised learning of skinned clothed Avatar networks[C]//Proceedings of the 2021 IEEE Conference on Computer Vision and Pattern Recognition, Nashville, Jun 19-25, 2021. Piscataway: IEEE, 2021: 2886-2897. [103] BULDYREV S, GOLDBERGER A, HAVLIN S, et al. Long-range correlation properties of coding and noncoding DNA sequences: GenBank analysis[J]. Physical Review E, 1995, 51(5): 5084 -5091. [104] MIHAJLOVIC M, ZHANG Y, BLACK M J, et al. LEAP: learning articulated occupancy of people[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, Jun 19-25, 2021. Piscataway: IEEE, 2021: 10461-10471. [105] ZHU X, LIU X, LEI Z, et al. Face alignment in full pose range: a 3D total solution[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 41(1): 78-92. [106] BLANZ V, VETTER T. Face recognition based on fitting a 3D morphable model[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(9): 1063-1074. [107] FENG Y, WU F, SHAO X H, et al. Joint 3D face reconstruction and dense alignment with position map regression network[C]//LNCS 11218: Proceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Cham: Springer, 2018: 557-574. [108] DENG Y, YANG J L, XU S C, et al. Accurate 3D face reconstruction with weakly-supervised learning: from single image to image set[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 285-295. [109] GENOVA K, COLE F, MASCHINOT A, et al. Unsupervised training for 3D morphable model regression[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Washington: IEEE Computer Society, 2018: 8377-8386. [110] TEWARI A, ZOLLHOFER M, KIM H, et al. MoFA: model-based deep convolutional face autoencoder for unsupervised monocular reconstruction[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision Workshops, Venice, Oct 22-29, 2017. Washington: IEEE Computer Society, 2017: 1274-1283. [111] ZHU W B, WU H T, CHEN Z Y, et al. ReDA: reinforced differentiable attribute for 3D face reconstruction[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 4957-4966. [112] DAI A, NIE?NER M. Scan2Mesh: from unstructured range scans to 3D meshes[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 5574-5583. [113] GECER B, S. PLOUMPIS, KOTSIA I, et al. GANFIT: generative adversarial network fitting for high fidelity 3D face reconstruction[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 1155-1164. [114] KARRAS T, LAINE S, AILA T. A style-based generator architecture for generative adversarial networks[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 4401-4410. [115] PIAO J T, SUN K Q, WANG Q, et al. Inverting generative adversarial renderer for face reconstruction[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, Jun 19-25, 2021. Piscataway: IEEE, 2021: 15619-15628. [116] LUO H W, NAGANO K, KUNG H W, et al. Normalized Avatar synthesis using StyleGAN and perceptual refinement[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, Jun 19-25, 2021. Piscataway: IEEE, 2021: 11662-11672. [117] SILBERMAN N, HOIEM D, KOHLI P, et al. Indoor segmentation and support inference from RGBD images[C]//LNCS 7576: Proceedings of the 12th European Conference on Computer Vision, Florence, Oct 7-13, 2012. Cham: Springer, 2012: 746-760. [118] LIM J J, PIRSIAVASH H, TORRALBA A. Parsing IKEA objects: fine pose estimation[C]//Proceedings of the 2013 IEEE International Conference on Computer Vision, Sydney, Dec 1-8, 2013. Washington: IEEE Computer Society, 2013: 2992-2999. [119] XIANG Y, MOTTAGHI R, SAVARESE S. Beyond PASCAL: a benchmark for 3D object detection in the wild[C]//Proceedings of the 2014 IEEE Winter Conference on Applications of Computer Vision, Steamboat Springs, Mar 24-26, 2014. Washington: IEEE Computer Society, 2014: 75-82. [120] CHANG A X, FUNKHOUSER T, GUIBAS L, et al. Shape-Net: an information-rich 3D model repository[J]. arXiv: 1512.03012, 2015. [121] DAI A, CHANG A X, SAVVA M, et al. ScanNet: richly-annotated 3D reconstructions of indoor scenes[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 5828-5839. [122] SONG S R, YU F, ZENG A, et al. Semantic scene completion from a single depth image[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 190-198. [123] ARMENI I, SAX S, ZAMIR A R, et al. Joint 2D-3D-semantic data for indoor scene understanding[J]. arXiv:1702. 01105, 2017. [124] SAINT A, AHMED E, SHABAYEK A E R, et al. 3DBodyTex: textured 3D body dataset[C]//Proceedings of the 2018 International Conference on 3D Vision, Verona, Sep 5-8, 2018. Washington: IEEE Computer Society, 2018: 495-504. [125] GEIGER A, LENZ P, STILLER C, et al. Vision meets robotics: the KITTI dataset[J]. International Journal of Robotics Research, 2013, 32(11): 1231-1237. [126] SCH?PS T, SCH?NBERGER J L, GALLIANI S, et al. A multi-view stereo benchmark with high-resolution images and multi-camera videos[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 2538-2547. [127] JENSEN R R, DAHL A L, VOGIATZIS G, et al. Large scale multi-view stereopsis evaluation[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, Jun 23-28, 2014. Washington: IEEE Computer Society, 2014: 406-413. [128] PAYSAN P, KNOTHE R, B. AMBERG, et al. A 3D face model for pose and illumination invariant face recognition[C]//Proceedings of the 6th IEEE International Conference on Advanced Video and Signal Based Surveillance, Genova, Sep 2-4, 2009. Washington: IEEE Computer Society, 2009: 296-301. [129] BOOTH J, ROUSSOS A, PONNIAH A, et al. Large scale 3D morphable models[J]. International Journal of Computer Vision, 2018, 126(2): 233-254. [130] SCHMIDT R M, SINGH K. MeshMixer: an interface for rapid mesh composition[C]//Proceedings of the 2010 International Conference on Computer Graphics and Interactive Techniques, Los Angeles, Jul 26-30, 2010. New York: ACM, 2010. [131] LU Y, LIU C, KEVIN I, et al. Digital twin-driven smart manufacturing: connotation, reference model, applications and research issues[J]. Robotics and Computer-Integrated Manufacturing, 2020, 61: 101837. [132] 唐维军, 徐琨, 柳有权, 等. 自动驾驶汽车虚拟测试中的树木点云生成方法[J]. 计算机工程与应用, 2021, 57(11): 185-192. TANG W J, XU K, LIU Y Q, et al. Method for generating three-dimensional point cloud of trees in autonomous vehicle virtual testing[J]. Computer Engineering and Applications, 2021, 57(11): 185-192. [133] DURRANT-WHYTE H, BAILEY T. Simultaneous localization and mapping: part I[J]. IEEE Robotics & Automation Magazine, 2006, 13(2): 99-110. [134] SCHÖNBERGER J L, FRAHM J M. Structure-from-motion revisited[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer Society, 2016: 4104-4113. |
[1] | YANG Yongzhao, ZHANG Yujin, ZHANG Lijun. Dense Point Cloud Reconstruction by Shape and Pose Features Learning [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(5): 1117-1127. |
[2] | LI Changhua, TIAN Simin, ZHOU Fangxiao. Extracting Contour of BIM Wall Based on Adaptive Block and 3D Reconstruction Research [J]. Journal of Frontiers of Computer Science and Technology, 2018, 12(3): 452-461. |
[3] | WANG Haifei, JIA Jinyuan, XIE Ning. Vanishing Point Detection and Scene Reconstruction of Cluttered Room [J]. Journal of Frontiers of Computer Science and Technology, 2016, 10(5): 678-687. |
[4] | SHI Ying, WANG Wenjian, BAI Xuefei. 3D Dense Reconstruction Method Based on Multiple Features [J]. Journal of Frontiers of Computer Science and Technology, 2015, 9(5): 594-603. |
[5] | GUO Fusheng, XU Huarong, GAO Wei, HU Zhanyi. Scene Reconstruction Based on View Clustering via Camera Auxiliary Information [J]. Journal of Frontiers of Computer Science and Technology, 2013, 7(9): 783-799. |
[6] | GAO Hui, ZHANG Maojun, XU Wei. 3D Reconstruction from Single Catadioptric Omnidirectional Image Assisted by Remote Sensing Image [J]. Journal of Frontiers of Computer Science and Technology, 2011, 5(2): 147-154. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/