Journal of Frontiers of Computer Science and Technology ›› 2023, Vol. 17 ›› Issue (2): 303-323.DOI: 10.3778/j.issn.1673-9418.2208052
• Frontiers·Surveys • Previous Articles Next Articles
WU Xin, XU Hong, LIN Zhuosheng, LI Shengke, LIU Huilin, FENG Yue
Online:
2023-02-01
Published:
2023-02-01
吴欣,徐红,林卓胜,李胜可,刘慧琳,冯跃
WU Xin, XU Hong, LIN Zhuosheng, LI Shengke, LIU Huilin, FENG Yue. Review of Deep Learning in Classification of Tongue Image[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(2): 303-323.
吴欣, 徐红, 林卓胜, 李胜可, 刘慧琳, 冯跃. 深度学习在舌象分类中的研究综述[J]. 计算机科学与探索, 2023, 17(2): 303-323.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2208052
[1] MACIOCIA G. Tongue diagnosis in Chinese medicine [M]. Seattle: Eastland Press, 1995. [2] ZHANG D. Automated biometrics: technnologies and systems[M]. Berlin, Heidelberg: Springer, 2000. [3] BARBARA K. Atlas of Chinese of tongue diagnosis[M]. Seattle: Eastland Press, 1998. [4] PANG B, ZHANG D, LI N, et al. Computerized tongue diagnosis based on Bayesian networks[J]. IEEE Transactions on Biomedical Engineering, 2004, 51(10): 1803-1810. [5] ZHI L, ZHANG D, YAN J Q, et al. Classification of hyper-spectral medical tongue images for tongue diagnosis[J]. Computerized Medical Imaging and Graphics, 2007, 31(8): 672-678. [6] QI Z, TU L P, CHEN J B, et al. The classification of tongue colors with standardized acquisition and ICC profile correction in traditional Chinese medicine[J]. BioMed Research International, 2016: 3510807. [7] 王昇, 刘开华, 王丽婷. 舌诊图像点刺和瘀点的识别与提取[J]. 计算机工程与科学, 2017, 39(6): 1126-1132. WANG S, LIU K H, WANG L T. Tongue spots and petechiae recognition and extraction in tongue diagnosis images[J]. Computer Engineering & Science, 2017, 39(6): 1126-1132. [8] YAMAMOTO S, TSUMURA N, NAKAGUCHI T, et al. Principal component vector rotation of the tongue color spectrum to predict “Mibyou”(disease-oriented state)[J]. International Journal of Computer Assisted Radiology and Surgery, 2011, 6(2): 209-215. [9] 刘畅. 基于决策树及神经网络对儿童抽动障碍肾志不足证舌象的研究[D]. 济南: 山东中医药大学, 2020. LIU C. A study of tongue feature in children with tic disorders of kidney emotion deficiency based on decision tree and neural network[D]. Jinan: Shandong University of Traditional Chinese Medicine, 2020. [10] 王奕然, 张新峰. 基于 AdaBoost 级联框架的舌色分类[J]. 北京生物医学工程, 2020, 39(1): 8-14. WANG Y R, ZHANG X F. Tongue color classification based on AdaBoost cascade framework[J]. Beijing Biomedical Engineering, 2020, 39(1): 8-14. [11] BHARATHI M, PRASAD D, VENKATAKRISHNAMOOR-THY T, et al. Diabetes diagnostic method based on tongue image classification using machine learning algorithms[J]. Journal of Pharmaceutical Negative Results, 2022, 13(4): 1247-1250. [12] GORUR K, BOZKURT M R, BASCIL M S, et al. GKP signal processing using deep CNN and SVM for tongue-machine interface[J]. Traitement du Signal, 2019, 36(4): 319-329 . [13] OBAFEMI-AJAYI T, KANAWONG R, XU D, et al. Features for automated tongue image shape classification[C]//Proceedings of the 2012 IEEE International Conference on Bioinformatics and Biomedicine Workshops, Philadelphia, Oct 4-7, 2012. Washington: IEEE Computer Society, 2012: 273-279. [14] 李宗润. 基于深度学习技术的舌体分割模型研究与舌象智能化应用探索[D]. 成都: 成都中医药大学, 2020. LI Z R. The study of tongue segmentation model based on deep learning technology and application exploration of the intelligence of tongue image[D]. Chengdu: Chengdu University of Traditional Chinese Medicine, 2020. [15] 李红岩, 李灿, 郎许锋,等. 中医四诊智能化研究现状及热点分析[J]. 南京中医药大学学报, 2022, 38(2): 180-186. LI H Y, LI C, LANG X F, et al. Analysis of the research status and hot spot of intelligent four-diagnosis in TCM[J]. Journal of Nanjing University of Traditional Chinese Medicine, 2022, 38(2): 180-186. [16] 牛富泉. 基于深度学习的中医舌像分类模型研究[D]. 成都: 电子科技大学, 2021. NIU F Q. Research on tongue image classification in traditional Chinese medicine based on deep learning[D]. Chengdu: University of Electronic Science and Technology of China, 2021. [17] 鲍康. 基于舌头检测与舌象识别的中医智能诊断系统的设计与实现[D]. 北京: 北京交通大学, 2021. BAO K. Design and implementation of TCM intelligent diagnosis system based on tongue detection and tongue manifestation recognition[D]. Beijing: Beijing Jiaotong University, 2021. [18] 刘飞, 张俊然, 杨豪. 基于深度学习的糖尿病患者的分类识别 [J]. 计算机应用, 2018, 38(S1): 39-43. LIU F, ZHANG J R, YANG H. Classification and recognition of diabetes mellitus based on deep learning[J]. Journal of Computer Application, 2018, 38(S1): 39-43. [19] SUN Y, DAI S, LI J, et al. Tooth-marked tongue recognition using gradient-weighted class activation maps[J]. Future Internet, 2019, 11(2): 45. [20] 王东军, 朱青青, 余静寅, 等. 基于CiteSpace的舌诊客观化研究领域科学知识图谱与可视化分析[J]. 世界科学技术: 中医药现代化, 2021, 23(1): 283-291. WANG D J, LI Q Q, YU J Y, et al. Atlas and visualization analysis of scientific knowledge in the field of tongue objectification research based on CiteSpace[J]. World Science and Technology: Modernization of Traditional Chinese Medicine, 2021, 23(1): 283-291. [21] 李渊彤, 罗裕升, 朱珍民. 基于深度学习的舌象特征分析 [J]. 计算机科学, 2020, 47(11): 148-158. LI Y T, LUO Y S, ZHU Z M. Tongue image analysis in traditional Chinese medicine based on deep learning[J]. Computer Science, 2020, 47(11): 148-158. [22] MCCULLOCH W S, PITTS W. A logical calculus of the ideas immanent in nervous activity[J]. The Bulletin of Mathematical Biophysics, 1943, 5(4): 115-133. [23] CHEN L, LI S, BAI Q, et al. Review of image classification algorithms based on convolutional neural networks[J]. Remote Sensing, 2021, 13(22): 4712. [24] ROSENBLATT F. The perceptron: a probabilistic model for information storage and organization in the brain[J]. Psych-ological Review, 1958, 65(6): 386. [25] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324. [26] 邢甜甜. 基于卷积神经网络的舌象模式分类研究[D]. 秦皇岛: 燕山大学, 2018. XING T T. Classification of tongue pattern based on convolution neural network[D]. Qinhuangdao: Yanshan University, 2018. [27] ZHOU L, PAN S, WANG J, et al. Machine learning on big data: opportunities and challenges[J]. Neurocomputing, 2017, 237: 350-361. [28] MANGASARIAN O L, MUSICANT D R. Data discrimination via nonlinear generalized support vector machines[M]. Berlin, Heidelberg: Springer, 2001. [29] 张珂, 冯晓晗, 郭玉荣, 等. 图像分类的深度卷积神经网络模型综述[J]. 中国图象图形学报, 2021, 26(10): 2305-2325. ZHANG K, FENG X H, GUO Y R, et al. Overview of deep convolutional neural networks for image classification[J]. Journal of Image and Graphics , 2021, 26(10): 2305-2325. [30] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90. [31] ZEILER M D, FERGUS R. Visualizing and understanding convolutional networks[C]//LNCS 8689: Proceedings of the 13th European Conference on Computer Vision, Zurich, Sep 6-12, 2014. Cham: Springer, 2014: 818-833. [32] XUE Y, LI X, CUI Q, et al. Cracked tongue recognition based on deep features and multiple-instance SVM[C]//LNCS 11165: Proceedings of the 19th Pacific-Rim Conference on Multimedia, Hefei, Sep 21-22, 2018. Cham: Springer,2018: 642-652. [33] HUO C M, ZHENG H, SU H Y, et al. Tongue shape classification integrating image preprocessing and convolution neural network[C]//Proceedings of the 2017 2nd Asia-Pacific Conference on Intelligent Robot Systems, Wuhan, Jun 16-18, 2017. Piscataway: IEEE, 2017: 42-46. [34] IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[C]//Proceedings of the 32nd International Conference on Machine Learning, Lille, Jul 6-11, 2015: 448-456. [35] 肖庆新, 张菁, 张辉, 等. 基于轻型卷积神经网络的舌苔颜色分类方法[J]. 测控技术, 2019, 38(3): 26-31. XIAO Q X, ZHANG J, ZHANG H, et al. Tongue coating color classification based on shallow convolutional neural network[J]. Measurement & Control Technology, 2019, 38(3): 26-31. [36] JIA Y Q, SHELHAMER E, DONAHUE J, et al. Caffe: convolutional architecture for fast feature embedding[C]//Proceedings of the 2014 ACM International Conference on Multimedia, Orlando, Nov 3-7, 2014. New York: ACM, 2014: 675-678. [37] HOU J, SU H Y, YAN B, et al. Classification of tongue color based on CNN[C]//Proceedings of the 2017 IEEE 2nd International Conference on Big Data Analysis, Beijing, Mar 10-12, 2017. Piscataway: IEEE, 2017: 725-729. [38] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv:1409. 1556, 2014. [39] SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern recognition, Boston, Jun 7-12, 2015. Washington: IEEE Computer Society, 2015: 1-9. [40] RORA S, BHASKARA A, GE R, et al Provable bounds for learning some deep representations[C]//Proceedings of the 31st International Conference on Machine Learning, Beijing, Jun 21-26, 2014: 584-592. [41] LIN M, CHEN Q, YAN S. Network in network[J]. arXiv:1312.4400, 2013. [42] FU S, ZHENG H, YANG Z, et al. Computerized tongue coating nature diagnosis using convolutional neural network[C]//Proceedings of the 2017 IEEE 2nd International Conference on Big Data Analysis, Beijing, Mar 10-12, 2017. Piscataway: IEEE, 2017: 730-734. [43] OTSU N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9(1): 62-66. [44] SMITH A R. Color gamut transform pairs[J]. ACM Sig-graph Computer Graphics, 1978, 12(3): 12-19. [45] HE K M, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer Society, 2016: 770-778. [46] LI J, ZHANG Z, ZHU X, et al. Automatic classification framework of tongue feature based on convolutional neural networks[J]. Micromachines, 2022, 13(4): 501. [47] RONNEBERGER O, FISCHER P, BROX T. U-Net: conv-olutional networks for biomedical image segmentation[C]//LNCS 9351: Proceedings of the 2015 International Con-ference on Medical Image Computing and Computer-Assisted Intervention, Munich, Oct 5-9, 2015. Cham: Springer, 2015: 234-241. [48] 邵尤伟. 基于深度学习的智能舌诊方法研究[D]. 厦门: 厦门大学, 2018. SHAO Y W. Research on intelligent tongue diagnosis based on deep leaning[D]. Xiamen: Xiamen University, 2018. [49] ZHANG D, ZHANG H Z, ZHANG B. Statistical analysis of tongue color and its applications in diagnosis[M]. Berlin,Heidelberg: Springer, 2017. [50] CHANG W H, CHU H T, CHANG H H. Tongue fissure visualization with deep learning[C]//Proceedings of the 2018 Conference on Technologies and Applications of Artificial Intelligence, Taichung, China, Nov 30-Dec 2, 2018. Washington: IEEE Computer Society, 2018: 14-17. [51] SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: visual explanations from deep networks via gradient-based localization[C]//Proceedings of the 2017 IEEE Inter-national Conference on Computer Vision, Venice, Oct 22-29, 2017. Washington: IEEE Computer Society, 2017: 618-626. [52] TANG Y, SUN Y, CHIANG J Y, et al. Research on multiple-instance learning for tongue coating classification[J]. IEEE Access, 2021, 9: 66361-66370. [53] ANDREWS S, TSOCHANTARIDIS I, HOFMANN T. Support vector machines for multiple-instance learning[C]//Proceedings of the 2022 Conference on Neural Information Processing Systems, Vancouver, Dec 9-14, 2002. Cambridge: MIT Press, 2002: 561-568. [54] 孙萌, 张新峰. 基于TripletLoss损失函数的舌象分类方法研究[J]. 北京生物医学工程, 2020, 39(2): 131-137. SUN M, ZHANG X F. Tongue image classification based TripletLoss metric[J]. Beijing Biomedical Engineering, 2020, 39(2): 131-137. [55] HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 2261-2269. [56] 陈慧贞. 基于卷积神经网络的舌象辨识模型应用研究 [D]. 秦皇岛:燕山大学, 2019. CHEN H Z. Research on application of tongue recognition model based on convolutional neural network[D]. Qinhuangdao: Yanshan University, 2019. [57] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Piscataway: IEEE, 2018: 7132-7141. [58] 骆明楠. 面向智能舌诊的注意力卷积网络研究[D]. 广州: 华南理工大学, 2020. LUO M N. Research on attention convolution networks for intelligent tongue diagnosis[D]. Guangzhou: South China University of Technology, 2020. [59] GIRSHICK R, DONAHUE J, DARELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, Jun 23-28, 2014. Washington: IEEE Computer Society, 2014: 580-587. [60] AZIZ L, SALAM M S B H, SHEIKH U, et al. Exploring deep learning-based architecture, strategies, applications and current trends in generic object detection: a comprehensive review[J]. IEEE Access, 2020, 8: 170461-170495. [61] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[C]//Proceedings of the Annual Conference on Neural Information Processing Systems 2015, Montreal, Dec 7-12, 2015: 91-99. [62] GAVRILESCU R, ZET C, FO?AL?U C, et al. Faster R-CNN: an approach to real-time object detection[C]//Proceedings of the 2018 International Conference and Exposition on Electrical and Power Engineering, Iasi, Oct 18-19, 2018. Piscataway: IEEE, 2018: 165-168. [63] SHAO Q, LI X, FU Z. Recognition of teeth-marked tongue based on gradient of concave region[C]//Proceedings of the 2014 International Conference on Audio, Language and Image Processing, Shanghai, Jul 7-9, 2014. Piscataway:IEEE, 2014: 968-972. [64] WANG H, ZHANG X, CAI Y. Research on teeth marks recognition in tongue image[C]//Proceedings of the 2014 International Conference on Medical Biometrics, Shenzhen, May 30-Jun 1, 2014. Piscataway: IEEE, 2014: 80-84. [65] LI X, ZHANG Y, CUI Q, et al. Tooth-marked tongue recognition using multiple instance learning and CNN features[J]. IEEE Transactions on Cybernetics, 2018, 49(2): 380-387. [66] GHOLAMI E, TABBAKH S R K, KHEIRABADIH M. Proposing method to increase the detection accuracy of stomach cancer based on colour and lint features of tongue using CNN and SVM[J]. arXiv:2011.09962, 2020. [67] 杜春慧. 中医舌质特征的机器学习模型研究[D]. 成都:电子科技大学, 2020. DU C H. Research on machine leaning model of tongue characteristics in traditional Chinese medicine[D]. Chengdu: University of Electronic Science and Technology of China, 2020. [68] CHEN P, MEN S, LIN H, et al. Detection of local lesions in tongue recognition based on improved Faster R-CNN[C]//Proceedings of the 2021 6th International Conference on Computational Intelligence and Applications, Xiamen, Jun 11-13, 2021. Piscataway: IEEE, 2021: 165-168. [69] HE K, GKIOXARI G, DOLLáR P, et al. Mask R-CNN[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Oct 22-29, 2017. Washington:IEEE Computer Society, 2017: 2980-2988. [70] LI J, CHEN Q, HU X, et al. Establishment of noninvasive diabetes risk prediction model based on tongue features and machine learning techniques[J]. International Journal of Medical Informatics, 2021, 149: 104429. [71] PENG C D, WANG L, JIANG D M, et al. Establishing and validating a spotted tongue recognition and extraction model based on multiscale convolutional neural network[J]. Digital Chinese Medicine, 2022, 5(1): 49-58. [72] 刘佳丽, 孙自强. 基于Double-D算法的舌像检测[J]. 计算机工程与设计, 2020, 41(7): 2025-2030. LIU J L, SUN Z Q. Tongue image detection based on Double-D algorithm[J]. Computer Engineering and Design, 2020, 41(7): 2025-2030. [73] YEN S J, YE S C, LEE C L. Traditional Chinese medicine online intelligent tongue diagnosis bot[C]//Proceedings of the 2021 International Symposium on Intelligent Signal Pr-ocessing and Communication Systems, Hualien, China,Nov 16-19, 2021. Piscataway: IEEE, 2021: 1-2. [74] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[J]. arXiv: 2004.10934, 2020. [75] 颜建军, 李东旭, 郭睿, 等. 基于深度学习和随机森林的齿痕舌分类研究[J]. 中华中医药学刊, 2022, 40(2): 19-22. YAN J J, LI D X, GUO R, et al. Research on classification of dentate tongue based on deep learning and random forest[J]. Chinese Archives of Traditional Chinese Medicine, 2022, 40(2): 19-22. [76] WENG H, LI L, LEI H, et al. A weakly supervised tooth-mark and crack detection method in tongue image[J]. Con-currency and Computation: Practice and Experience, 2021, 33(16): e6262. [77] 高爽, 徐巧枝. 迁移学习方法在医学图像领域的应用综述 [J]. 计算机工程与应用, 2021, 57(24): 39-50. GAO S, XU Q Z. Review of application of transfer learning in medical image field[J]. Computer Engineering and App-lications, 2021, 57(24): 39-50. [78] CHEN Z, ZHANG X, HUANG W. The similar sparse do-main adaptation illustrated by the case of TCM tongue inspection[C]//Proceedings of the 2020 IEEE International Conference on Bioinformatics and Biomedicine, Seoul, Dec 16-19, 2020. Piscataway: IEEE, 2020: 1520-1525. [79] 刘婧玮. 基于卷积神经网络的中医舌象辨识人工智能方法学研究[D]. 北京: 北京中医药大学, 2020. LIU J W. Artificial intelligence methodology for Chinese medicine tongue recognition based on convolutional neural network[D]. Beijing: Beijing University of Chinese Medicine, 2020. [80] WANG X, LIU J, WU C, et al. Artificial intelligence in tongue diagnosis: using deep convolutional neural network for recognizing unhealthy tongue with tooth-mark[J]. Com-putational and Structural Biotechnology Journal, 2020, 18: 973-980. [81] 邱童. 基于深度学习与多特征融合的舌象诊断算法[J]. 现代信息科技, 2020, 4(1): 63-65. QIU T. Tongue image diagnosis algorithm based on deep learning and multi-feature fusion[J]. Modern Information Technology, 2020, 4(1): 63-65. [82] HU Y, WEN G, LIAO H, et al. Automatic construction of Chinese herbal prescriptions from tongue images using CNNs and auxiliary latent therapy topics[J]. IEEE Transactions on Cybernetics, 2019, 51(2): 708-721. [83] SONG C, WANG B, XU J. Classifying tongue images using deep transfer learning[C]//Proceedings of the 2020 5th International Conference on Computational Intelligence and Applications, Beijing, Jun 19-21, 2020. Piscataway: IEEE, 2020: 103-107. [84] SADASIVAN S, SIVAKUMAR T T, JOSEPH A P, et al. Tongue print identification using deep CNN for forensic analysis[J]. Journal of Intelligent & Fuzzy Systems, 2020, 38(5): 6415-6422. [85] 杨晶东, 张朋. 基于迁移学习的全连接神经网络舌象分类方法[J]. 第二军医大学学报, 2018, 39(8): 897-902. YANG J D, ZHANG P. Tongue image classification method based on transfer learning and fully connected neural network[J]. Academic Journal of Naval Medical University, 2018, 39(8): 897-902. [86] 翟鹏博, 杨浩, 宋婷婷, 等. 融合注意力机制的多阶段舌象分类算法[J]. 计算机工程与设计, 2021, 42(6): 1606-1613. ZHAI P B, YANG H, SONG T T, et al. Multi-stage image classification algorithm incorporating attention mechanism [J]. Computer Engineering and Design, 2021, 42(6): 1606-1613. [87] KONG X, RUI Y, DONG X, et al. Tooth-marked tongue recognition based on mask scoring R-CNN[C]//Proceedings of the 2020 2nd International Conference on Artificial Intelligence Technologies and Application, Dalian, Aug 21-23, 2020. [88] 刘梦, 王曦廷, 周璐, 等. 基于深度学习与迁移学习的中医舌象提取识别研究[J]. 中医杂志, 2019(10): 835-840. LIU M, WANG X Y, ZHOU L, et al. Study on extraction and recognition of traditional Chinese tongue manifestation: based on deep learning and migration learning[J]. Journal of Traditional Chinese Medicine, 2019(10): 835-840. [89] XU Q, ZENG Y, TANG W, et al. Multi-task joint learning model for segmenting and classifying tongue images using a deep neural network[J]. IEEE Journal of Bio-Medical and Health Informatics, 2020, 24(9): 2481-2489. [90] 汤一平, 王丽冉, 何霞, 等. 基于多任务卷积神经网络的舌象分类研究[J]. 计算机科学, 2018, 45(12): 255-261. TANG Y P, WANG L R, HE X, et al. Classification of tongue image based on multi-task deep convolution neural network[J]. Computer Science, 2018, 45(12): 255-261. [91] 王爱民, 赵忠旭, 沈兰荪. 中医舌象自动分析中舌色, 苔色分类方法的研究[J]. 北京生物医学工程, 2000, 19(3): 136-141. WANG A M, ZHAO Z X, SHEN L S. Research on the tongue color classification in automatic analysis of traditional Chinese medicine[J]. Beijing Biomedical Engineering, 2000, 19(3): 136-141. [92] MIKA S, RATSCH G, WESTON J, et al. Fisher discriminant analysis with kernels[C]//Proceedings of the 1999 IEEE Workshop on Neural Networks for Signal Processing, Madison, Aug 25, 1999. Piscataway: IEEE, 1999: 41-48. [93] 张思远, 翟宏琛, 梁艳梅, 等. 模糊相关中的加权算法及其在彩色图像检索中的应用[J]. 中国科学: G辑物理学、力学、天文学, 2004, 34(1): 60-68. ZHANG S Y, ZHAI H C, LIANG Y M, et al. Weighting algorithm in fuzzy correlation and its application in color image retrieval[J]. Scientia Sinica: Physica, Mechanica & Astronomica, 2004, 34(1): 60-68. [94] QIN J, MEN G J, WU G Z, et al. The retrieval of the medical tongue-coating images using fuzzy CMAC neural network[C]//Proceedings of the 2005 IEEE International Conference on Industrial Technology, Hong Kong, China, Dec 14-17, 2005. Piscataway: IEEE, 2005: 465-468. [95] QIU T. Tongue identification for small samples based on meta learning[C]//Proceedings of the 2020 International Conference on Computer Information and Big Data App-lications, Guiyang, Apr 17-19, 2020. Piscataway: IEEE, 2020: 295-299. [96] XIAO Q, ZHANG H, ZHANG J, et al. Texture analysis of tongue coating in traditional Chinese medicine based on transfer learning and multi-model decision[J]. Sensing and Imaging, 2021, 22(1): 1-13. [97] HU Y, WEN G, LUO M, et al. Fully-channel regional attention network for disease-location recognition with tongue images[J]. Artificial Intelligence in Medicine, 2021, 118: 102110. [98] XU Y, WEN G, YANG P, et al. Task-coupling elastic learning for physical sign-based medical image classification[J]. IEEE Journal of Biomedical and Health Informatics, 2021, 26(2): 626-637. [99] DAI Y, WANG G. Analyzing tongue images using a conceptual alignment deep autoencoder[J]. IEEE Access, 2018, 6: 5962- 5972. [100] MENG D, CAO G, DUAN Y, et al. Tongue images class-ification based on constrained high dispersal network [J]. Evidence-Based Complementary and Alternative Medi- cine, 2017(3): 7452427 . [101] 卓力, 孙亮亮, 张辉, 等. 有噪声标注情况下的中医舌色分类方法[J]. 电子与信息学报, 2022, 44(1): 89-98. ZHUO L, SUN L L, ZHANG H, et al. TCM tongue color classification method under noisy labeling[J]. Journal of Electronics & Information Technology, 2022, 44(1): 89-98. [102] RAJAKUMARAN S, SASIKALA J. Improvement in tongue color image analysis for disease identification using deep learning based depthwise separable convolution model[J]. Indian Journal of Computer Science and Engineering, 2021, 12: 21-34. [103] HANHUI. Tooth-marked-tongue[EB/OL]. (2020-03-10)[2022-07-25]. http://www.kaggle.com/datasets/clearhanhui/biyesheji. [104] BioHit. TongueImageDataset[EB/OL]. (2014-09-05) [2022- 07-25]. http://github.com/BioHit/TongeImageDatase. [105] CHAWLA N V, BOWYER K W, HALL L O, et al. SMOTE: synthetic minority over-sampling technique[J]. Journal of Artificial Intelligence Research, 2002, 16: 321-357. [106] CHEN Z, ZHANG X, QIU R. Application of artificial intelligence in tongue diagnosis of traditional Chinese medicine: a review[J]. TMR Modern Herbal Medicine, 2021, 4(2): 14-30. [107] 刘国正. 卷积神经网络在中医舌象分类模型中的应用研究[D]. 长春: 吉林大学, 2018. LIU G Z. Research on application of traditional Chinese medicine tongue images classification based on CNN[D]. Changchun: Jilin University, 2018. [108] CHIU C C. A novel approach based on computerized image analysis for traditional Chinese medical diagnosis of the tongue[J]. Computer Methods and Programs in Biomedicine, 2000, 61(2): 77-89. [109] GUI M, ZHANG X, HU G, et al. A study on tongue image color description based on label distribution learning[C]// Proceedings of the 8th International Conference on Biomedical Engineering and Informatics, Shenyang, Oct 14-16, 2015. Piscataway: IEEE, 2015: 148-152. [110] ZHANG H, WANG K, ZHANG D, et al. Computer aided tongue diagnosis system[C]//Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, Shanghai, Jan 17-18, 2005. Piscataway: IEEE, 2006: 6754-6757. [111] HUI S C, HE Y, THACH D T C. Machine learning for tongue diagnosis[C]//Proceedings of the 2007 6th Inter-national Conference on Information, Communications & Signal Processing, Singapore, Dec 10-13, 2007. Piscataway: IEEE, 2007: 1-5. [112] HU J W, YAN Z Z, JIANG J H. Classification of fissured tongue images using deep neural networks[J]. Technology and Health Care, 2022, 30(S1): 271-283. [113] HSU P C, WU H K, HUANG Y C, et al. The tongue features associated with type 2 diabetes mellitus[J]. Medicine, 2019, 98(19): e15567. [114] ZHANG B, KUMAR B V, ZHANG D. Detecting diabetes mellitus and nonproliferative diabetic retinopathy using tongue color, texture, and geometry features[J]. IEEE Transactions on Biomedical Engineering, 2013, 61(2): 491- 501. [115] LI J, HU X, TU L, et al. Diabetes tongue image class-ification using machine learning and deep learning[R]. Shanghai University of Traditional Chinese Medicine, 2021: 1-20. [116] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: transformers for image recognition at scale[J]. arXiv:201011929, 2020. [117] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the Annual Conference on Neural Information Processing Systems 2017, Long Beach, Dec 4-9, 2017. Red Hook: Curran Associates, 2017: 5998-6008. [118] PRAJAPATI M D, NAMDEV N. Prediction of heart disease risk based on deep learning[J]. International Research Journal of Modernization in Engineering Technology and Science, 2022, 4: 1011-1016. [119] SU J, LI Z, HUANG M, et al. Triglyceride glucose index for the detection of the severity of coronary artery disease in different glucose metabolic states in patients with coronary heart disease: a RCSCD-TCM study in China[J]. Cardiovascular Diabetology, 2022, 21(1): 1-9. [120] 叶桦, 冯全生, 严小英, 等. 基于人工神经网络的糖尿病合并冠心病舌脉象证型预测研究[J]. 中华中医药杂志, 2020, 35(10): 5184-5187. YE H, FENG Q S, YAN X Y, et al. Study of tongue and pulses syndrome prediction of diabetes mellitus combined with coronary heart disease based on artificial neural network[J]. China Journal of Traditional Chinese Medicine and Pharmacy, 2020, 35(10): 5184-5187. [121] LIANG K, HUANG X, CHEN H, et al. Tongue diagnosis and treatment in traditional Chinese medicine for severe COVID-19: a case report[J]. Annals of Palliative Medicine, 2020, 9(4): 2400-2407. [122] WANG X, WANG X, LOU Y, et al. Constructing tongue coating recognition model using deep transfer learning to assist syndrome diagnosis and its potential in non-invasive ethnopharmacological evaluation[J]. Journal of Ethnophar-macology, 2022, 285: 114905. [123] 中华中医药学会. 中医体质分类与判定: ZYYXH/T 157—2009[S]. 2009. China Association of Chinese Medicine. Classification and determination of constitution in TCM: ZYYXH/T 157—2009[S]. 2009. [124] ZHOU H, HU G, ZHANG X. Constitution identification of tongue image based on CNN[C]//Proceedings of the 11th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics, Beijing, Oct 13-15, 2018. Piscataway: IEEE, 2018: 1-5. [125] 周浩, 胡广芹, 张新峰. 基于舌图像深度特征融合的中医体质分类方法研究[J]. 北京生物医学工程, 2020, 39(3): 221-226. ZHOU H, HU G Q, ZHANG X F. Preliminary study on traditional Chinese medicine constitution classification method based on tongue image feature fusion[J]. Beijing Biomedical Engineering, 2020, 39(3): 221-226. [126] 谢佳澄. 深度学习在中医舌象分类中的应用与实践[D]. 长春: 吉林大学, 2019. XIE J C. Application and practice of deep learning in classification of tongue image in traditional Chinese medicine[D]. Changchun:Jilin University, 2019. [127] LI H, WEN G, ZENG H. Natural tongue physique ident-ification using hybrid deep learning methods[J]. Multimedia Tools and Applications, 2019, 78(6): 6847-6868. [128] LI T, WU C, MA Y. Multi-label constitution identification based on tongue image in traditional Chinese medicine[C]//Proceedings of the 2021 China Automation Congress, Beijing, Oct 22-24, 2021. Piscataway: IEEE, 2021: 1617-1622. [129] JIANG T, HU X J, YAO X H, et al. Tongue image quality assessment based on a deep convolutional neural network [J]. BMC Medical Informatics and Decision Making, 2021, 21(1): 1-14. [130] BARDOU D, ZHANG K, AHMAD S M. Lung sounds classification using convolutional neural networks[J]. Artificial Intelligence in Medicine, 2018, 88: 58-69. [131] GANDOMKAR Z, BRENNAN P C, MELLO-THOMS C. MuDeRN: multi-category classification of breast histopat-hological image using deep residual networks[J]. Artificial Intelligence in Medicine, 2018, 88: 14-24. [132] MA J, WEN G, WANG C, et al. Complexity perception classification method for tongue constitution recognition [J]. Artificial Intelligence in Medicine, 2019, 96: 123-133. [133] JIANG Y, CHI Z. A CNN model for semantic person part segmentation with capacity optimization[J]. IEEE Transa-ctions on Image Processing, 2018, 28(5): 2465-2478. [134] SANDLER M, HOWARD A, ZHU M, et al. MobileNetv2: inverted residuals and linear bottle-necks[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-23, 2018. Piscataway: IEEE, 2018: 4510-4520. [135] HOWARD A, SANDLER M, CHU G, et al. Searching for MobileNetv3[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 1314-1324. |
[1] | HUANG TAO, LI Hua, ZHOU Gui, LI Shaobo, WANG Yang. Survey of Research on Instance Segmentation Methods [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(4): 810-825. |
[2] | AN Shengbiao, GUO Yuqi, BAI Yu, WANG Tengbo. Survey of Few-Shot Image Classification Research [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(3): 511-532. |
[3] | JIAO Lei, YUN Jing, LIU Limin, ZHENG Bofei, YUAN Jingshu. Overview of Closed-Domain Deep Learning Event Extraction Methods [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(3): 533-548. |
[4] | ZHOU Yan, WEI Qinbin, LIAO Junwei, ZENG Fanzhi, FENG Wenjie, LIU Xiangyu, ZHOU Yuexia. Natural Scene Text Detection and End-to-End Recognition: Deep Learning Methods [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(3): 577-594. |
[5] | WANG Wensen, HUANG Fengrong, WANG Xu, LIU Qinglin, YI Boheng. Overview of Visual Inertial Odometry Technology Based on Deep Learning [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(3): 549-560. |
[6] | LI Mingyang, CHEN Wei, WANG Shanshan, LI Jie, TIAN Zijian, ZHANG Fan. Survey on 3D Reconstruction Methods Based on Visual Deep Learning [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(2): 279-302. |
[7] | WANG Yingjie, ZHANG Chengye, BAI Fengbo, WANG Zumin, JI Changqing. Review of Chinese Named Entity Recognition Research [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(2): 324-341. |
[8] | WANG Yan, LYU Yanping. Hybrid Deep CNN-Attention for Hyperspectral Image Classification [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(2): 385-395. |
[9] | TONG Hang, YANG Yan, JIANG Yongquan. Multi-head Self-attention Neural Network for Detecting EEG Epilepsy [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(2): 442-452. |
[10] | ZHANG Lu, LU Tianliang, DU Yanhui. Overview of Facial Deepfake Video Detection Methods [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(1): 1-26. |
[11] | WANG Shichen, HUANG Kai, CHEN Zhigang, ZHANG Wendong. Survey on 3D Human Pose Estimation of Deep Learning [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(1): 74-87. |
[12] | LIANG Jiali, HUA Baojian, LYU Yashuai, SU Zhenyu. Loop Invariant Code Motion Algorithm for Deep Learning Operators [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(1): 127-139. |
[13] | WANG Jianzhe, WU Qin. Salient Object Detection Based on Coordinate Attention Feature Pyramid [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(1): 154-165. |
[14] | YANG Caidong, LI Chengyang, LI Zhongbo, XIE Yongqiang, SUN Fangwei, QI Jin. Review of Image Super-resolution Reconstruction Algorithms Based on Deep Learning [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(9): 1990-2010. |
[15] | ZHANG Xiangping, LIU Jianxun. Overview of Deep Learning-Based Code Representation and Its Applications [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(9): 2011-2029. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/