Journal of Frontiers of Computer Science and Technology ›› 2023, Vol. 17 ›› Issue (2): 324-341.DOI: 10.3778/j.issn.1673-9418.2208028
• Frontiers·Surveys • Previous Articles Next Articles
WANG Yingjie, ZHANG Chengye, BAI Fengbo, WANG Zumin, JI Changqing
Online:
2023-02-01
Published:
2023-02-01
王颖洁,张程烨,白凤波,汪祖民,季长清
WANG Yingjie, ZHANG Chengye, BAI Fengbo, WANG Zumin, JI Changqing. Review of Chinese Named Entity Recognition Research[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(2): 324-341.
王颖洁, 张程烨, 白凤波, 汪祖民, 季长清. 中文命名实体识别研究综述[J]. 计算机科学与探索, 2023, 17(2): 324-341.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2208028
[1] GRISHMAN R, SUNDHEIM B. Message understanding conference-6: a brief history[C]//Proceedings of the 16th Conference on Computational Linguistics, Copenhagen, Aug 5-9, 1996. Stroudsburg: ACL, 1996: 466-471. [2] FENG Y, JIANG B, WANG L, et al. Cybersecurity named entity recognition using multi-modal ensemble learning[J]. IEEE Access, 2020, 8: 63214-63224. [3] 潘正高. 基于规则和统计相结合的中文命名实体识别研究[J]. 情报科学, 2012, 30(5): 708-712. PAN Z G. Research on the recognition of Chinese named entity based on rules and statistics[J]. Information Science, 2012, 30(5): 708-712. [4] 闫萍. 基于规则和概率统计相结合的中文命名实体识别研究[J]. 计算机与数字工程, 2011, 39(9): 88-91. YAN P. Research on the indentifiction for Chinese named entity based on combination of rules and statistic analysis[J]. Computer and Digital Engineering, 2011, 39(9): 88-91. [5] RABINER L R. A tutorial on hidden Markov models and selected applications in speech recognition[J]. Proceedings of the IEEE, 1989, 77(2): 257-286. [6] LAFFERTY J D, MCCALLUM A, PEREIRA F. Conditional random fields: probabilistic models for segmenting and labeling sequence data[C]//Proceedings of the 18th International Conference on Machine Learning, Williamstown, Jun 28-Jul 1, 2001. San Mateo: Morgan Kaufmann, 2001: 282-289. [7] 王欢, 朱文球, 吴岳忠, 等. 基于数控机床设备故障领域的命名实体识别[J]. 工程科学学报, 2020, 42(4): 476-482. WANG H, ZHU W Q, WU Y Z, et al. Named entity recognition based on equipment and fault field of CNC machine tools[J]. Chinese Journal of Engineering, 2020, 42(4): 476-482. [8] 杨培, 杨志豪, 罗凌, 等. 基于注意机制的化学药物命名实体识别[J]. 计算机研究与发展, 2018, 55(7): 1548-1556. YANG P, YANG Z H, LUO L, et al. An attention-based approach for chemical compound and drug named entity recog-nition[J]. Journal of Computer Research and Development, 2018, 55(7): 1548-1556. [9] 李健, 熊琦, 胡雅婷, 等. 基于Transformer和隐马尔科夫模型的中文命名实体识别方法[J]. 吉林大学学报(工学版), 2021. DOI: 10.13229/j.cnki.jdxbgxb20210856. LI J, XIONG Q, HU Y T, et al. Chinese named entity recognition method based on transformer and hidden Markov model[J]. Journal of Jilin University (Engineering and Technology Edition), 2021. DOI: 10.13229/j.cnki.jdxbgxb20210856. [10] ALNABKI M W, EDUARDO F, et al. Improving named entity recognition in noisy user-generated text with local distance neighbor feature[J]. Neurocomputing, 2020, 382(C): 1-11. [11] ZHAO Z H, YANG Z H, LUO L, et al. Disease named entity recognition from biomedical literature using a novel convolutional neural network[J]. BMC Medical Genomics, 2017, 10(S5): 73. [12] 王蓬辉, 李明正, 李思. 基于数据增强的中文医疗命名实体识别[J]. 北京邮电大学学报, 2020, 43(5): 84-90. WANG P H, LI M Z, LI S. Data augmentation for Chinese clinical named entity recognition[J]. Journal of Beijing University of Posts and Telecommunications, 2020, 43(5): 84-90. [13] AGUILAR G, MAHARJAN S, SOLORIO T, et al. A multi-task approach for named entity recognition in social media data[J]. arXiv:1906.04135, 2019. [14] 郭旭超, 唐詹, 刁磊, 等. 基于部首嵌入和注意力机制的病虫害命名实体识别[J]. 农业机械学报, 2020, 51(S2): 335-343. GUO X C, TANG Z, DIAO L, et al. Recognition of Chinese agricultural diseases and pests named entity with joint radical-embedding and self-attention mechanism[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(S2): 335-343. [15] 张晗, 郭渊博, 李涛. 结合GAN与BiLSTM-Attention-CRF的领域命名实体识别[J]. 计算机研究与发展, 2019, 56(9): 1851-1858. ZHANG H, GUO Y B, LI T. Domain named entity recognition combining GAN and BiLSTM-attention-CRF[J]. Journal of Computer Research and Development, 2019, 56(9): 1851-1858. [16] DAS P, DAS K A. A graph based clustering approach for relation extraction from crime data[J]. IEEE Access, 2019, 7: 101269-101282. [17] 赵鹏飞, 赵春江, 吴华瑞, 等. 基于注意力机制的农业文本命名实体识别[J]. 农业机械学报, 2021, 52(1): 185-192. ZHAO P F, ZHAO C J, WU H R, et al. Named entity recognition of Chinese agricultural text based on attention mechanism[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(1): 185-192. [18] 杨超男, 彭敦陆. 融合BSRU和胶囊网络的文档级实体关系抽取模型[J]. 小型微型计算机系统, 2022, 43(5): 964-968. YANG C N, PENG D L. Document-level entity relation extraction method integrating bidirectional simple recurrent unit and capsule network[J]. Journal of Chinese Computer Systems, 2022, 43(5): 964-968. [19] 郭晓然, 罗平, 王维兰. 基于Transformer编码器的中文命名实体识别[J]. 吉林大学学报(工学版), 2021, 51(3): 989-995. GUO X R, LUO P, WANG W L. Chinese named entity recognition based on transformer encoder[J]. Journal of Jilin University (Engineering and Technology Edition), 2021, 51(3): 989-995. [20] 蔡庆. 多准则融合的中文命名实体识别方法[J]. 东南大学学报(自然科学版), 2020, 50(5): 929-934. CAI Q. Chinese named entity recognition based on multi-criteria fusion[J]. Journal of Southeast University (Natural Science Edition), 2020, 50(5): 929-934. [21] LIU J G, XIA C H. Innovative deep neural network modeling for fine-grained Chinese entity recognition[J]. Electronics, 2020, 9(6): 1001. [22] 陈剑, 何涛, 闻英友, 等. 基于BERT模型的司法文书实体识别方法[J]. 东北大学学报(自然科学版), 2020, 41(10): 1382-1387. CHEN J, HE T, WEN Y Y. Entity recognition method for judical documents based on BERT model[J]. Journal of Northeastern University (Natural Science), 2020, 41(10): 1382-1387. [23] DUAN H, SUI Z, GE T. The CIPS-SIGHAN CLP 2014 Chinese word segmentation bake-off[C]//Proceedings of the 3rd CIPS-SIGHAN Joint Conference on Chinese Language Processing, Wuhan, Oct 20-21, 2014. Stroudsburg: ACL, 2014: 90-95. [24] XIANG L, LI X Q, ZHOU Y. Word segmenter for Chinese micro-blogging text segmentation report for CIPS-SIGHAN 2014 bakeoff[C]//Proceedings of the 3rd CIPS-SIGHAN Joint Conference on Chinese Language Processing, Wuhan, Oct 20-21, 2014. Stroudsburg: ACL, 2014: 96-100. [25] TANG J, WU Q, LI Y H. An optimization algorithm of Chinese word segmentation based on dictionary[C]//Proceedings of the 2015 International Conference on Network and Information Systems for Computers, Wuhan, Jan 23-25, 2015. Piscataway: IEEE, 2015: 259-262. [26] SHU X, WANG J, SHEN X, et al. Word segmentation in Chinese language processing[J]. Statistics & Its Interface, 2017, 10(2): 165-173. [27] XUE N W. Chinese word segmentation as character tagging[J]. International Journal of Computational Linguistics & Chinese Language Processing, 2003, 8(1): 29-47. [28] SONG B C, CHAI B, ZHANG Q, et al. A Chinese word segment model for energy literature based on neural networks with electricity user dictionary[C]//Proceedings of the 2019 International Conference on Asian Language Processing, Shanghai, Nov 15-17, 2019. Piscataway: IEEE, 2019: 194-198. [29] BOWMAN S, ZHU X D. Deep learning for natural language inference[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Minneapolis, Jun 2, 2019. Stroudsburg: ACL, 2019: 6-8. [30] MENG Y, SHEN J M, ZHANG C, et al. Weakly-supervised neural text classification[C]//Proceedings of the 27th ACM International Conference on Information and Knowledge Management, Torino, Oct 22-26, 2018. New York: ACM, 2018: 983-992. [31] WANG M, CAI Q, WANG L Y, et al. Chinese news text classification based on attention-based CNN-BiLSTM[C]//Proceedings of the 11th International Symposium on Multispectral Image Processing and Pattern Recognition, Wuhan, Nov 2-3, 2019. Bellingham: SPIE, 2020: 12-20. [32] LI L X, GONG P, JI L K, et al. A deep attention network for Chinese word segment[C]//Proceedings of the 2019 11th International Conference on Machine Learning and Computing, Zhuhai, Feb 22-24, 2019. New York: ACM, 2019: 528-532. [33] ZHANG M S, ZHANG Y, CHE W X, et al. Type-supervised domain adaptation for joint segmentation and POS-tagging[C]//Proceedings of the 14th Conference of the European Chapter of the Association for Computational Linguistics, Gothenburg, Apr 26-30, 2014. Stroudsburg: ACL, 2014: 588-597. [34] QIU L K, ZHANG Y. Word segmentation for Chinese novels[C]//Proceedings of the 29th AAAI Conference on Artificial Intelligence, Austin, Jan 25-30, 2015. New York: ACM, 2015: 2440-2446. [35] ZHANG Q, LIU X Y, FU J L. Neural networks incorporating dictionaries for Chinese word segmentation[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence, the 30th Innovative Applications of Artificial Intelligence, and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence, New Orleans, Feb 2-7, 2018. Menlo Park: AAAI, 2018: 5682-5689. [36] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, Dec 4-9, 2017. Red Hook: Curran Associates , 2017: 6000-6010. [37] TANG G B, MüLLER M, RIOS A, et al. Why self-attention? A targeted evaluation of neural machine translation architectures[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Oct 31-Nov 4, 2018. Stroudsburg: ACL, 2018: 4263-4272. [38] KITAEV N, KLEIN D. Constituency parsing with a self-attentive encoder[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, Melbourne, Jul 15-20, 2018. Stroudsburg: ACL, 2018: 2676-2686. [39] TAN Z X, WANG M X, XIE J, et al. Deep semantic role labeling with self-attention[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence, the 30th Innovative Applications of Artificial Intelligence, and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence, New Orleans, Feb 2-7, 2018. Menlo Park: AAAI, 2018: 4929-4936. [40] DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Minneapolis, Jun 2-7, 2019. Stroudsburg: ACL, 2019: 4171-4186. [41] RANFORD A, NARASIMHAN K, SALIMANS T, et al. Improving language understanding by generative pre-training[J]. Computation and Language, 2017, 4(6): 212-220. [42] AL-RFOU R, CHOE D, CONSTANT N, et al. Character-level language modeling with deeper self-attention[C]//Proceedings of the 33rd AAAI Conference on Artificial Intelligence, the 31st Innovative Applications of Artificial Intelligence Conference, the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, Honolulu, Jan 27-Feb 1, 2019. Menlo Park: AAAI, 2019: 3159-3166. [43] GAN L L, ZHANG Y. Investigating self-attention network for Chinese word segmentation[J]. IEEE/ACM Transactions on Audio, Speech and Language Processing, 2020, 28: 2933-2941. [44] LI H B, HAGIWARA M, LI Q, et al. Comparison of the impact of word segmentation on name tagging for Chinese and Japanese[C]//Proceedings of the 9th Edition of the Language Resources and Evaluation Conference, Reykjavik, May 26-31, 2014. Paris: European Language Resources Association, 2014: 2532-2536. [45] ZHANG Y, YANG J. Chinese NER using lattice LSTM[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, Melbourne, Jul 15-20, 2018. Stroudsburg: ACL, 2018: 1554-1564. [46] SUI D B, CHEN Y B, LIU K, et al. Leverage lexical know-ledge for Chinese named entity recognition via collaborative graph network[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, Hong Kong, China, Nov 3-7, 2019. Stroudsburg: ACL, 2019: 3830-3840. [47] GUI T, ZOU Y C, ZHANG Q, et al. A lexicon-based graph neural network for Chinese NER[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, Hong Kong, China, Nov 3-7, 2019. Stroudsburg: ACL, 2019: 1040-1050. [48] MA R, GUI T, ZHANG Q, et al. CNN-based Chinese NER with lexicon rethinking[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence, Macao, China, Aug 10-16, 2019. Menlo Park: AAAI, 2019: 4982-4988. [49] KONG B, LIU S, WEI F, et al. Chinese relation extraction using extend softword[J]. IEEE Access, 2021, 9: 110299 - 110308. [50] LI X N, YAN H, QIU X P, et al. FLAT: Chinese NER using flat-lattice transformer[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Washington, Jul 5-10, 2020. Stroudsburg: ACL, 2020: 6836-6842. [51] ZHANG Y, LIU Y G, ZHU J J, et al. Learning Chinese word embeddings from stroke, structure and pinyin of characters[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management, Beijing, Nov 3-7, 2019. New York: ACM, 2019: 1011-1020. [52] LI Y, NING H. Multi-feature keyword extraction method based on TF-IDF and Chinese grammar analysis[C]//Proceedings of the 2021 International Conference on Machine Learning and Intelligent Systems Engineering, Chongqing, Jul 9-11, 2021. Piscataway: IEEE, 2021: 362-365. [53] LIU F, LU H, LO C, et al. Learning character-level compositionality with visual features[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, Vancouver, Jul 30-Aug 4, 2017. Stroudsburg: ACL, 2017: 2059-2068. [54] SU T R, LEE H Y, Learning Chinese word representations from glyphs of characters[C]//Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, Copenhagen, Sep 7-11, 2017. Stroudsburg: ACL, 2017: 264-273. [55] MENG Y X, WU W, WANG F, et al. Glyce: glyph-vectors for Chinese character representations[C]//Proceedings of the 33rd International Conference on Neural Information Processing Systems, Vancouver, Dec 8-14, 2019. New York: ACM, 2019: 2746-2757. [56] CAO S S, LU W, ZHOU J, et al. Cw2vec: learning Chinese word embeddings with stroke n-gram information[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence, the 30th Innovative Applications of Artificial Intelligence, and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence, New Orleans, Feb 2-7, 2018. Menlo Park: AAAI, 2018: 5053-5061. [57] ZHANG L T, KOMACHI M. Chinese-Japanese unsupervised neural machine translation using sub-character level information[J]. arXiv:1903.00149, 2019. [58] SUN Y M, LIN L, YANG N, et al. Radical-enhanced Chinese character embedding[C]//LNCS 8835: Proceedings of the 21st International Conference on Neural Information Processing, Kuching, Nov 3-6, 2014. Cham: Springer, 2014: 279-286. [59] SHAO Y, HARDMEIER C, TIEDEMANN J, et al. Character-based joint segmentation and pos tagging for Chinese using bidirectional RNN-CRF[C]//Proceedings of the 8th International Joint Conference on Natural Language Processing, Taipei, China, Nov 27-Dec 1, 2017. Stroudsburg: ACL, 2017: 173-183. [60] CHEN A G, YIN C L. CRW-NER: exploiting multiple embeddings for Chinese named entity recognition[C]//Proceedings of the 2021 4th International Conference on Artificial Intelligence and Big Data, Chengdu, May 28-31, 2021. Piscataway: IEEE, 2021: 520-524. [61] YANG J, WANG H M, TANG Y T, et al. Incorporating lexicon and character glyph and morphological features into BiLSTM-CRF for Chinese medical NER[C]//Proceedings of the 2021 IEEE International Conference on Consumer Electronics and Computer Engineering, Guangzhou, Jan 15-17, 2021. Piscataway: IEEE, 2021: 12-17. [62] ZHU W H, JIN X. Improve word embedding using both writing and pronunciation[J]. PLoS One, 2018, 13(12): e0208785. [63] CHAUDHARY A, ZHOU C T, LEVIN L, et al. Adapting word embeddings to new languages with morphological and phonological subword representations[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Oct 31-Nov 4, 2018. Stroudsburg: ACL, 2018: 3285-3295. [64] ZHANG Y, LIU Y G, ZHU J J, et al. FSPRM: a feature subsequence based probability representation model for Chinese word embedding[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2021, 29: 1702-1716. [65] SUTHAHARAN S. Support vector machine[M]. Berlin, Heidelberg: Springer, 2016. [66] PETERS M E, NEUMANN M, IYYER M, et al. Deep contextualized word representations[J]. arXiv:1802.05365, 2018. [67] YADA V V, BETHARD S. A survey on recent advances in named entity recognition from deep learning models[J]. arXiv:1910.11470, 2019. [68] YOHANNES H M, AMAGASA T. Named-entity recognition for a low-resource language using pre-trained language model[C]//Proceedings of the 37th ACM/SIGAPP Symposium on Applied Computing, Apr 25-29, 2022. New York: ACM, 2022: 837-844. [69] XIE Y L, LI A P, CHONG C F. Research on effects of pre-trained language models in medical named entity recognition[C]//Proceedings of the 2021 9th International Conference on Information Technology: IoT and Smart City, Guangzhou, Dec 22-25, 2021. New York: ACM, 2021: 148-153. [70] LEE L H, LU Y. Multiple embeddings enhanced multi-graph neural networks for Chinese healthcare named entity recognition[J]. IEEE Journal of Biomedical and Health Informatics, 2021, 25(7): 2801-2810. [71] WEI J Q, REN X Z, LI X G, et al. NeZha: neural contextualized representation for Chinese language understanding[J]. arXiv:1909.00204, 2019. [72] LI S, BAO Z Q, ZHAO S, et al. A LEBERT-based model for named entity recognition[C]//Proceedings of the 2021 3rd International Conference on Artificial Intelligence and Advanced Manufacture, Manchester, Oct 23-25, 2021. New York: ACM, 2021: 980-983. [73] LAN Z Z, CHEN M D, GOODMAN S, et al. ALBERT: a lite BERT for self-supervised learning of language representations[J]. arXiv:1909.11942, 2019. [74] XIONG Z Q, KONG D Z, XIA Z C, et al. Chinese government official document named entity recognition based on Albert[C]//Proceedings of the 2021 IEEE 6th International Conference on Cloud Computing and Big Data Analytics, Chengdu, Apr 24-26, 2021. Piscataway: IEEE, 2021: 350-354. [75] WEN S, ZENG B, LIAO W X. Named entity recognition for instructions of Chinese medicine based on pre-trained language model[C]//Proceedings of the 2021 3rd International Conference on Natural Language Processing, Beijing, Mar 26-28, 2021. Piscataway: IEEE, 2021: 139-144. [76] XIAO Y L, ZHAO Q, LI J Q, et al. MLNER: exploiting multi-source lexicon information fusion for named entity recognition in Chinese medical text[C]//Proceedings of the 2021 IEEE 45th Annual Computers, Software, and Applications Conference, Madrid, Jul 12-16, 2021. Piscataway: IEEE, 2021: 1079-1084. [77] ZHANG Z C, QIN X H, QIU Y L, et al. Well-behaved transformer for Chinese medical NER[C]//Proceedings of the 2021 3rd International Conference on Natural Language Processing, Beijing, Mar 26-28, 2021. Piscataway: IEEE, 2021: 162-167. [78] ZHU Z C, LI J Q, ZHAO Q, et al. Medical named entity recognition of Chinese electronic medical records based on stacked bidirectional long short-term memory[C]//Proceedings of the 2021 IEEE 45th Annual Computers, Software, and Applications Conference, Madrid, Jul 12-16, 2021. Piscataway: IEEE, 2021: 1930-1935. [79] CHEN H Y, YUAN S W, ZHANG X. ROSE-NER: robust semi-supervised named entity recognition on insufficient labeled data[C]//Proceedings of the 10th International Joint Conference on Knowledge Graphs, Dec 6-8, 2021. New York: ACM, 2021: 38-44. [80] LIU Y H, OTT M, GOYAL N, et al. RoBERTa: a robustly optimized BERT pretraining approach[J]. arXiv:1907.11692, 2019. [81] LI Z M, YUN H Y, GUO Z B, et al. Medical named entity recognition based on multi-feature fusion of BERT[C]//Proceedings of the 2021 4th International Conference on Big Data Technologies, Zibo, Sep 24-26, 2021. New York: ACM, 2021: 86-91. [82] ZHENG H Y, QIN B, XU M. Chinese medical named entity recognition using CRF-MT-Adapt and NER-MRC[C]//Proceedings of the 2021 2nd International Conference on Computing and Data Science, Stanford, Jan 28-29, 2021. Piscataway: IEEE, 2021: 362-365. [83] BROWN T B, MANN B, RYDER N, et al. Language models are few-shot learners[C]//Proceedings of the Annual Conference on Neural Information Processing Systems 2020, Vancouver, Dec 6-12, 2020: 1877-1901. [84] BINA N, HAN X P, CHEN B, et al. Benchmarking knowledge-enhanced common sense question answering via knowledge-to-text transformation[C]//Proceedings of the 35th AAAI Conference on Artificial Intelligence, 33rd Conference on Innovative Applications of Artificial Intelligence, the 11th Symposium on Educational Advances in Artificial Intelligence, Feb 2-9, 2021. Menlo Park: AAAI, 2021: 12574-12582. [85] PETRONI F, LEWIS P, PIKTUS A, et al. How context affects language models?? factual predictions[J]. arXiv:2005.04611, 2020. [86] GAO T Y, FISCH A, CHEN D Q. Making pre-trained language models better few-shot learners[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, Aug 1-6, 2021. Stroudsburg: ACL, 2021: 3816-3830. [87] CAO B X, LIN H Y, HAN X P, et al. Knowledgeable or educated guess? Revisiting language models as knowledge bases[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, Aug 1-6, 2021. Stroudsburg: ACL, 2021: 1860-1874. [88] ZHAO T Z, WALLACE E, FENG S, et al. Calibrate before use: improving few-shot performance of language models[J]. arXiv:2102.09690, 2021. [89] MIN S, LYU X X, HOLTZMAN A, et al. Rethinking the role of demonstrations: what makes in-context learning work?[J]. arXiv:2202.12837, 2022. [90] 苏嘉, 何彬, 吴昊, 等. 基于中文电子病历的心血管疾病风险因素标注体系及语料库构建[J]. 自动化学报, 2019, 45(2): 420-426. SU J, HE B, WU H, et al. Annotation scheme and corpus construction for cardiovascular diseases risk factors from Chinese electronic medical records[J]. Acta Automatica Sinica, 2019, 45(2): 420-426. [91] 罗熹, 夏先运, 安莹, 等. 结合多头自注意力机制与BiLSTM-CRF的中文临床实体识别[J]. 湖南大学学报(自然科学版), 2021, 48(4): 45-55. LUO X, XIA X Y, AN Y, et al. Chinese CNER combined with multi-head self-attention and BiLSTM-CRF[J]. Journal of Hunan University (Natural Sciences), 2021, 48(4): 45-55. [92] WANG Y, SUN Y N, MA Z C, et al. A hybrid model for named entity recognition on Chinese electronic medical records[J]. ACM Transactions on Asian and Low-Resource Language Information Processing, 2021, 20(2): 1-12. [93] TIAN S B, ERDENGASILENG A, YANG X, et al. Transformer-based named entity recognition for parsing clinical trial eligibility criteria[C]//Proceedings of the 12th ACM Conference on Bioinformatics, Computational Biology, and Health Informatics, Gainesville, Aug 1-4, 2021. New York: ACM, 2021: 1-6. [94] 张芳丛, 秦秋莉, 姜勇, 等. 基于RoBERTa-WWM-BiLSTM-CRF的中文电子病历命名实体识别研究[J]. 数据分析与知识发现, 2022, 6(Z1): 251-262. ZHANG F C, QIN C L, JIANG Y, et al. Named entity recog-nition for Chinese EMR with RoBERTa-WWM-BiLSTM-CRF[J]. Data Analysis and Knowledge Discovery, 2022, 6(Z1): 251-262. [95] 景慎旗, 赵又霖. 面向中文电子病历文书的医学命名实体识别研究——一种基于半监督深度学习的方法[J]. 信息资源管理学报, 2021, 11(6): 105-115. JING S Q, ZHAO Y L. Recognizing clinical named entity from Chinese electronic medical record texts based on semi-supervised deep learning[J]. Journal of Information Resources Management, 2021, 11(6): 105-115. [96] 李春楠, 王雷, 林鸿飞, 等. 基于BERT的盗窃罪法律文书命名实体识别方法[J]. 中文信息学报, 2021, 35(8): 73-81. LI C N, WANG L, LIN H F, et al. BERT based named entity recognition for legal texts on theft cases[J]. Journal of Chinese Information Processing, 2021, 35(8): 73-81. [97] LIU J X, YE L, ZHANG H L, et al. Named entity recognition of legal judgment based on small-scale labeled data[C]//Proceedings of the 2020 International Conference on Cyberspace Innovation of Advanced Technologies, Guangzhou, Dec 4-6, 2020. New York: ACM, 2020: 549-555. [98] 丁家伟, 刘晓栋. 基于ELECTRA-CRF的电信网络诈骗案件文本命名实体识别模型[J]. 信息网络安全, 2021, 21(6): 63-69. DING J W, LIU X D. Named entity recognition model of telecommunication network fraud crime based on ELECTRA-CRF[J]. Netinfo Security, 2021, 21(6): 63-69. [99] ROEGIEST A, HDUEK A K, MCNULTY A. A dataset and an examination of identifying passages for due diligence[C]//Proceedings of the 41st International ACM SIGIR Conference on Research & Development in Information Retrieval, Ann Arbor, Jul 8-12, 2018. New York: ACM, 2018: 465-474. [100] DONNELLY J, ROEGIEST A. The utility of context when extracting entities from legal documents[C]//Proceedings of the 29th ACM International Conference on Information and Knowledge Management, Ireland, Oct 19-23, 2020. New York: ACM, 2020: 2397-2404. |
[1] | HU Shuo, YAO Meiyu, SUN Linna, WANG Jie, ZHOU Si'en. Accurate Visual Tracking with Attention Feature [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(4): 868-878. |
[2] | ZHU Ji, XIAO Xiaoli, YIN Bo, SUN Qian, TAN Dong. Bilinear Diffusion Graph Recommendation Model Fusing User Social Relations [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(4): 826-836. |
[3] | QI Xin, YUAN Feiniu, SHI Jinting, WANG Guiqian. Semantic Segmentation Algorithm of Multi-level Feature Fusion Network [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(4): 922-932. |
[4] | HUANG TAO, LI Hua, ZHOU Gui, LI Shaobo, WANG Yang. Survey of Research on Instance Segmentation Methods [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(4): 810-825. |
[5] | AN Shengbiao, GUO Yuqi, BAI Yu, WANG Tengbo. Survey of Few-Shot Image Classification Research [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(3): 511-532. |
[6] | JIAO Lei, YUN Jing, LIU Limin, ZHENG Bofei, YUAN Jingshu. Overview of Closed-Domain Deep Learning Event Extraction Methods [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(3): 533-548. |
[7] | ZHOU Yan, WEI Qinbin, LIAO Junwei, ZENG Fanzhi, FENG Wenjie, LIU Xiangyu, ZHOU Yuexia. Natural Scene Text Detection and End-to-End Recognition: Deep Learning Methods [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(3): 577-594. |
[8] | XU Guangda, MAO Guojun. Aerial Image Object Detection of UAV Based on Multi-level Feature Fusion [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(3): 635-645. |
[9] | WANG Wensen, HUANG Fengrong, WANG Xu, LIU Qinglin, YI Boheng. Overview of Visual Inertial Odometry Technology Based on Deep Learning [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(3): 549-560. |
[10] | SHEN Huaiyan, WU Yun. Liver CT Image Segmentation Method Based on MSFA-Net [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(3): 646-656. |
[11] | LI Hongjin, PENG Li. High-Speed Tracking Algorithm Based on Siamese Network with Enhanced Features [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(2): 396-408. |
[12] | WANG Yan, LYU Yanping. Hybrid Deep CNN-Attention for Hyperspectral Image Classification [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(2): 385-395. |
[13] | TONG Hang, YANG Yan, JIANG Yongquan. Multi-head Self-attention Neural Network for Detecting EEG Epilepsy [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(2): 442-452. |
[14] | LI Mingyang, CHEN Wei, WANG Shanshan, LI Jie, TIAN Zijian, ZHANG Fan. Survey on 3D Reconstruction Methods Based on Visual Deep Learning [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(2): 279-302. |
[15] | WU Xin, XU Hong, LIN Zhuosheng, LI Shengke, LIU Huilin, FENG Yue. Review of Deep Learning in Classification of Tongue Image [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(2): 303-323. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/