Journal of Frontiers of Computer Science and Technology ›› 2023, Vol. 17 ›› Issue (1): 74-87.DOI: 10.3778/j.issn.1673-9418.2205070
• Frontiers·Surveys • Previous Articles Next Articles
WANG Shichen, HUANG Kai, CHEN Zhigang, ZHANG Wendong
Online:
2023-01-01
Published:
2023-01-01
王仕宸,黄凯,陈志刚,张文东
WANG Shichen, HUANG Kai, CHEN Zhigang, ZHANG Wendong. Survey on 3D Human Pose Estimation of Deep Learning[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(1): 74-87.
王仕宸, 黄凯, 陈志刚, 张文东. 深度学习的三维人体姿态估计综述[J]. 计算机科学与探索, 2023, 17(1): 74-87.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2205070
[1] MULTI-PERSON BRIDGEMAN L, VOLINO M, GUILL-EMAUT J Y, et al. Multi-person 3D pose estimation and tracking in sports[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-21, 2019. Piscataway: IEEE, 2019: 2487-2496. [2] ZHANG H, SCIUTTO C, AGRAWALA M, et al. Vid2player: controllable video sprites that behave and appear like profe-ssional tennis players[J]. ACM Transactions on Graphics, 2021, 40(3): 1-16. [3] CHEN W, JIANG Z, GUO H, et al. Fall detection based on key points of human-skeleton using openpose[J]. Symmetry, 2020, 12(5): 744. [4] WILLETT N S, SHIN H V, JIN Z, et al. Pose2Pose: pose selection and transfer for 2D character animation[C]//Proceedings of the 25th International Conference on Intelligent User Interfaces, Cagliari, Mar 17-20, 2020. New York: ACM, 2020: 88-99. [5] IONESCU C, PAPAVA D, OLARU V, et al. Human3.6M: large scale datasets and predictive methods for 3D human sensing in natural environments[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 36(7): 1325-1339. [6] LOPER M, MAHMOOD N, ROMERO J, et al. SMPL: a skinned multi-person linear model[J]. ACM Transactions on Graphics, 2015, 34(6): 1-16. [7] SUN X, SHANG J, LIANG S, et al. Compositional human pose regression[C]//Proceedings of the 2017 IEEE Intern-ational Conference on Computer Vision, Hawaii, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 2602-2611. [8] PAVLAKOS G, ZHOU X, DANIILIDIS K. Ordinal depth supervision for 3D human pose estimation[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Washington: IEEE Computer Society, 2018: 7307-7316. [9] PAVLAKOS G, ZHOU X, DERPANIS K G, et al. Coarse-to-fine volumetric prediction for singleimage 3D human pose[C]//Proceedings of the 2017 IEEE Conference on Com- puter Vision and Pattern Recognition, Hawaii, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 7025-7034. [10] WANG Z, NIE X, QU X, et al. Distribution-aware single-stage models for multi-person 3D pose estimation[C]//Proceed-ings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, Jun 21-24, 2022. Piscataway: IEEE, 2022: 13096-13105. [11] ZHAN Y, LI F, WENG R, et al. Ray3D: ray-based 3D human pose estimation for monocular absolute 3D local-ization[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, Jun 21-24, 2022. Piscataway: IEEE, 2022: 13116-13125. [12] SUN X, XIAO B, WEI F, et al. Integral human pose regression[C]//LNCS 11210: Proceedings of the 15th Euro-pean Conference on Computer Vision, Munich, Sep 8-14, 2018. Cham: Springer, 2018: 536-553. [13] LI J, BIAN S, ZENG A, et al. Human pose regression with residual log-likelihood estimation[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Oct 11-17, 2021. Piscataway: IEEE, 2021: 11025-11034. [14] CHEN C H, RAMANAN D. 3D human pose estimation= 2D pose estimation+matching[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recog-nition, Hawaii, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 7035-7043. [15] MORENO-NOGUER F. 3D human pose estimation from a single image via distance matrix regression[C]//Proceed-ings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Hawaii, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 2823-2832. [16] MARTINEZ J, HOSSAIN R, ROMERO J, et al. A simple yet effective baseline for 3D human pose estimation[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Oct 22-29, 2017. Washington: IEEE Computer Society, 2017: 2640-2649. [17] TEKIN B, MáRQUEZ-NEILA P, SALZMANN M, et al. Learning to fuse 2D and 3D image cues for monocular body pose estimation[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Oct 22-29, 2017. Washington: IEEE Computer Society, 2017: 3941-3950. [18] ZHOU K, HAN X, JIANG N, et al. Hemlets pose: learning part-centric heatmap triplets for accurate 3D human pose estimation[C]//Proceedings of the 2019 IEEE/CVF Intern-ational Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 2344-2353. [19] NIE B X, WEI P, ZHU S C. Monocular 3D human pose estimation by predicting depth on joints[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Oct 22-29, 2017. Washington: IEEE Computer Soc-iety, 2017: 3447-3455. [20] WANG J, HUANG S, WANG X, et al. Not all parts are created equal: 3D pose estimation by modeling bi-directional dependencies of body parts[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 7771-7780. [21] NIE Q, LIU Z, LIU Y. Unsupervised 3D human pose representation with viewpoint and pose disentanglement[C]//LNCS 12364: Proceedings of the 16th European Confe-rence on Computer Vision, Glasgow, Aug 23-28, 2020. Cham: Springer, 2020: 102-118. [22] MA X, SU J, WANG C, et al. Context modeling in 3D human pose estimation: a unified perspective[C]//Procee-dings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 6238-6247. [23] YU T, ZHENG Z, ZHONG Y, et al. Simulcap: single-view human performance capture with cloth simulation[C]//Proceedings of the 2019 IEEE/CVF Conference on Com-puter Vision and Pattern Recognition, Long Beach, Jun 16-21, 2019. Piscataway: IEEE, 2019: 5504-5514. [24] HOSSAIN M R I, LITTLE J J. Exploiting temporal infor-mation for 3D human pose estimation[C]//LNCS 11214: Proceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Cham: Springer, 2018: 69-86. [25] DABRAL R, MUNDHADA A, KUSUPATI U, et al. Learning 3D human pose from structure and motion[C]//LNCS 11213: Proceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Cham: Sprin-ger, 2018: 679-696. [26] CAI Y, GE L, LIU J, et al. Exploiting spatial-temporal relationships for 3D pose estimation via graph convolu-tional networks[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 2272-2281. [27] CHEN T, FANG C, SHEN X, et al. Anatomy-aware 3D human pose estimation with bone-based pose decomposi-tion[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 32(1): 198-209. [28] WEI W L, LIN J C, LIU T L, et al. Capturing humans in motion: temporal-attentive 3D human pose and shape estim-ation from monocular video[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, Jun 21-24, 2022. Piscataway: IEEE, 2022: 13211-13220. [29] ZHANG J, TU Z, YANG J, et al. MixSTE: Seq2seq mixed spatio-temporal encoder for 3D human pose estimation in video[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, Jun 21-24, 2022. Piscataway: IEEE, 2022: 13232-13242. [30] PAVLAKOS G, ZHU L, ZHOU X, et al. Learning to estimate 3D human pose and shape from a single color image[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Washington: IEEE Computer Society, 2018: 459-468. [31] JIANG W, KOLOTOUROS N, PAVLAKOS G, et al. Cohe-rent reconstruction of multiple humans from a single image[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 14-19, 2020. Piscataway: IEEE, 2020: 5579-5588. [32] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition , Columbus, Jun 24-27, 2014. Washington: IEEE Computer Society, 2014: 580-587. [33] KUNDU J N, RAKESH M, JAMPANI V, et al. Appearance consensus driven self-supervised human mesh recovery[C]//LNCS 12346: Proceedings of the 16th European Conference on Computer Vision, Glasgow, Aug 23-28, 2020. Cham: Springer, 2020: 794-812. [34] KOLOTOUROS N, PAVLAKOS G, DANIILIDIS K. Conv-olutional mesh regression for single-image human shape reconstruction[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition , Long Beach, Jun 16-21, 2019. Piscataway: IEEE, 2019: 4501-4510. [35] KOLOTOUROS N, PAVLAKOS G, Black M J, et al. Learning to reconstruct 3D human pose and shape via model-fitting in the loop[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 2252-2261. [36] MOON G, LEE K M. I2L-MeshNet: image-to-lixel predi-ction network for accurate 3D human pose and mesh estimation from a single RGB image[C]//LNCS 12352:Proceedings of the 16th European Conference on Computer Vision, Glasgow, Aug 23-28, 2020. Cham: Springer, 2020: 752-768. [37] XU X, CHEN H, MORENO-NOGUER F, et al. 3D human shape and pose from a single low-resolution image with self-supervised learning[C]//LNCS 12354: Proceedings of the 16th European Conference on Computer Vision, Glasgow, Aug 23-28, 2020. Cham: Springer, 2020: 284-300. [38] ZHANG H, TIAN Y, ZHOU X, et al. Pymaf: 3D human pose and shape regression with pyramidal mesh alignment feedback loop[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Oct 11-17, 2021. Piscataway: IEEE, 2021: 11446-11456. [39] ROGEZ G, WEINZAEPFEL P, SCHMID C. LCR-Net: loc-alization-classification-regression for human pose[C]//Proc-eedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Hawaii, Jul 21-26, 2017. Wash-ington: IEEE Computer Society, 2017: 3433-3441. [40] ROGEZ G, WEINZAEPFEL P, SCHMID C. LCR-Net++: multi-person 2D and 3D pose detection in natural images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 42(5): 1146-1161. [41] ZANFIR A, MARINOIU E, SMINCHISESCU C. Mon-ocular 3D pose and shape estimation of multiple people in natural scenes: the importance of multiple scene constraints[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Washington: IEEE Computer Society, 2018: 2148-2157. [42] MOON G, CHANG J Y, LEE K M. Camera distance-aware top-down approach for 3D multi-person pose estimation from a single RGB image[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 10133- 10142. [43] WANG C, LI J, LIU W, et al. HMOR: hierarchical multi-person ordinal relations for monocular multi-person 3D pose estimation[C]//LNCS 12348: Proceedings of the 16th European Conference on Computer Vision, Glasgow, Aug 23-28, 2020. Cham: Springer, 2020: 242-259. [44] ZANFIR A, MARINOIU E, ZANFIR M, et al. Deep network for the integrated 3D sensing of multiple people in natural images[C]//Proceedings of the Annual Conference on Neural Information Processing Systems 2018, Montréal, Dec 3-8, 2018: 8420-8429. [45] NIE X, FENG J, ZHANG J, et al. Single-stage multi-person pose machines[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 6951-6960. [46] FABBRI M, LANZI F, CALDERARA S, et al. Compressed volumetric heatmaps for multi-person 3D pose estimation[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 14-19, 2020. Piscataway: IEEE, 2020: 7204-7213. [47] CHENG Y, WANG B, YANG B, et al. Monocular 3D multi-person pose estimation by integrating top-down and bottom-up networks[C]//Proceedings of the 2021 IEEE/CVF Con-ference on Computer Vision and Pattern Recognition Piscataway: IEEE, 2021: 7649-7659. [48] ZHEN J, FANG Q, SUN J, et al. Smap: single-shot multi-person absolute 3D pose estimation[C]//LNCS 12360:Proceedings of the 16th European Conference on Computer Vision, Glasgow, Aug 23-28, 2020. Cham: Springer, 2020: 550-566. [49] MEHTA D, SOTNYCHENKO O, MUELLER F, et al. Single-shot multi-person 3D pose estimation from monocular RGB[C]//Proceedings of the 2018 International Conference on 3D Vision, Verona, Sep 5-8, 2018. Washington: IEEE Computer Society, 2018: 120-130. [50] MEHTA D, SOTNYCHENKO O, MUELLER F, et al. XNect: real-time multi-person 3D motion capture with a single RGB camera[J]. ACM Transactions on Graphics, 2020, 39(4): 82. [51] LI S, KE L, PRATAMA K, et al. Cascaded deep monocular 3D human pose estimation with evolutionary training data[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 14-19, 2020. Piscataway: IEEE, 2020: 6173-6183. [52] KUNDU J N, REVANUR A, WAGHMARE G V, et al. Unsupervised cross-modal alignment for multi-person 3D pose estimation[C]//LNCS 12358: Proceedings of the 16th European Conference on Computer Vision, Glasgow, Aug 23-28, 2020. Cham: Springer, 2020: 35-52. [53] CHEN X, LIN K Y, LIU W, et al. Weakly-supervised discovery of geometry-aware representation for 3D human pose estimation[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-21, 2019. Piscataway: IEEE, 2019: 10895-10904. [54] ZHANG Y, AN L, YU T, et al. 4D association graph for realtime multi-person motion capture using multiple video cameras[C]//Proceedings of the 2020 IEEE/CVF Confer-ence on Computer Vision and Pattern Recognition, Seattle, Jun 14-19, 2020. Piscataway: IEEE, 2020: 1324-1333. [55] TU H, WANG C, ZENG W. VoxelPose: towards multi-camera 3D human pose estimation in wild environment[C]//LNCS 12346: Proceedings of the 16th European Conference on Computer Vision, Glasgow, Aug 23-28, 2020. Cham: Springer, 2020: 197-212. [56] HUANG C, JIANG S, LI Y, et al. End-to-end dynamic matching network for multi-view multi-person 3D pose estimation[C]//LNCS 12373: Proceedings of the 16th Euro-pean Conference on Computer Vision, Glasgow, Aug 23-28, 2020. Cham: Springer, 2020: 477-493. [57] DONG J, JIANG W, HUANG Q, et al. Fast and robust multi-person 3D pose estimation from multiple views[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-21, 2019. Piscataway: IEEE, 2019: 7792-7801. [58] QIU H, WANG C, WANG J, et al. Cross view fusion for 3D human pose estimation[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 4342-4351. [59] XIE R, WANG C, WANG Y. MetaFuse: a pre-trained fus-ion model for human pose estimation[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 14-19, 2020. Piscataway: IEEE, 2020: 13686-13695. [60] CHEN H, GUO P, LI P, et al. Multi-person 3D pose estim-ation in crowded scenes based on multi-view geometry[C]//LNCS 12348: Proceedings of the 16th European Confe-rence on Computer Vision, Glasgow, Aug 23-28, 2020. Cham: Springer, 2020: 541-557. [61] PAVLAKOS G, ZHOU X, DERPANIS K G, et al. Harves-ting multiple views for marker-less 3D human pose annota-tions[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Hawaii, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 6988-6997. [62] ZHANG Z, WANG C, QIU W, et al. AdaFuse: adaptive multiview fusion for accurate human pose estimation in the wild[J]. International Journal of Computer Vision, 2021, 129(3): 703-718. [63] CHEN L, AI H, CHEN R, et al. Cross-view tracking for multi-human 3D pose estimation at over 100 FPS[C]//Pro-ceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 14-19, 2020. Piscataway: IEEE, 2020: 3279-3288. [64] REMELLI E, HAN S, HONARI S, et al. Lightweight multi-view 3D pose estimation through camera-disentangled repr-esentation[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 14-19, 2020. Piscataway: IEEE, 2020: 6040-6049. [65] KOCABAS M, ATHANASIOU N, BLACK M J. VIBE: video inference for human body pose and shape estimation[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 14-19, 2020. Piscataway: IEEE, 2020: 5253-5263. [66] MAHMOOD N, GHORBANI N, TROJE N F, et al. AMASS: archive of motion capture as surface shapes[C]//Proceedings of the 2019 IEEE/CVF International Confer-ence on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscata-way: IEEE, 2019: 5442-5451. [67] MITRA R, GUNDAVARAPU N B, SHARMA A, et al. Multiview-consistent semi-supervised learning for 3D human pose estimation[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 14-19, 2020. Piscataway: IEEE, 2020: 6907-6916. [68] IQBAL U, MOLCHANOV P, KAUTZ J. Weakly-supervised 3D human pose learning via multi-view images in the wild[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 14-19, 2020. Piscataway: IEEE, 2020: 5243-5252. [69] WANDT B, RUDOLPH M, ZELL P, et al. CanonPose: self-supervised monocular 3D human pose estimation in the wild[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 13294-13304. [70] KOCABAS M, KARAGOZ S, AKBAS E. Self-supervised learning of 3D human pose using multi-view geometry[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-21, 2019. Piscataway: IEEE, 2019: 1077-1086. [71] GONG K, ZHANG J, FENG J. PoseAug: a differentiable pose augmentation framework for 3D human pose estim-ation[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2021: 8575-8584. [72] YU T, ZHENG Z, GUO K, et al. DoubleFusion: real-time capture of human performances with inner body shapes from a single depth sensor[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recog-nition, Salt Lake City, Jun 18-22, 2018. Washington: IEEE Computer Society, 2018: 7287-7296. [73] XIONG F, ZHANG B, XIAO Y, et al. A2J: anchor-to-joint regression network for 3D articulated pose estimation from a single depth image[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 793-802. [74] LI Z, YU T, PAN C, et al. Robust 3D self-portraits in seconds[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 14-19, 2020. Piscataway: IEEE, 2020: 1344-1353. [75] ZHI T, LASSNER C, TUNG T, et al. TexMesh: recon-structing detailed human texture and geometry from RGB-D Video[C]//LNCS 12355: Proceedings of the 16th European Conference on Computer Vision, Glasgow, Aug 23-28, 2020. Cham: Springer, 2020: 492-509. [76] VON MARCARD T, HENSCHEL R, BLACK M J, et al. Recovering accurate 3D human pose in the wild using imus and a moving camera[C]//LNCS 11214: Proceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Cham: Springer, 2018: 601-617. [77] HUANG F, ZENG A, LIU M, et al. DeepFuse: an imu-aware network for real-time 3D human pose estimation from multi-view image[C]//Proceedings of the 2020 IEEE Winter Conference on Applications of Computer Vision, Snowmass Village, Mar 1-5, 2020. Piscataway: IEEE, 2020: 418-427. [78] ZHANG Z, WANG C, QIN W, et al. Fusing wearable IMUs with multi-view images for human pose estimation: a geo-metric approach[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 14-19, 2020. Piscataway: IEEE, 2020: 2200-2209. [79] MEHTA D, RHODIN H, CASAS D, et al. Monocular 3D human pose estimation in the wild using improved CNN supervision[C]//Proceedings of the 2017 International Conf-erence on 3D Vision, Qingdao, Oct 10-12, 2017. Washing-ton: IEEE Computer Society, 2017: 506-516. [80] CAO Z, GAO H, MANGALAM K, et al. Long-term human motion prediction with scene context[C]//LNCS 12346:Proceedings of the 16th European Conference on Computer Vision, Glasgow, Aug 23-28, 2020. Cham: Springer, 2020: 387-404. [81] ZHU L, REMATAS K, CURLESS B, et al. Reconstructing NBA players[C]//LNCS 12350: Proceedings of the 16th European Conference on Computer Vision, Glasgow, Aug 23-28, 2020. Cham: Springer, 2020: 177-194. [82] REZAZADEH F, KOWSAR R, RAFIEE H, et al. Fermen-tation of Soybean meal improves growth performance and immune response of abruptly weaned Holstein calves during cold weather[J]. Animal Feed Science and Technology, 2019, 254: 114206. [83] SIGAL L, BALAN A O, BLACK M J. HumanEva: synch-ronized video and motion capture dataset and baseline algorithm for evaluation of articulated human motion[J]. International Journal of Computer Vision, 2010, 87(1): 4-27. [84] JOO H, SIMON T, LI X L, et al. Panoptic studio: a massively multiview system for social interaction capture[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(1): 190-204. [85] LIU W, LUO W X, LIAN D Z, et al. Future frame prediction for anomaly detection—a new baseline[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Washington: IEEE Computer Society, 2018: 6536-6545. [86] BELAGIANNIS V, AMIN S, ANDRILUKA M, et al. 3D pictorial structures for multiple human pose estimation[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, Jun 24-27, 2014. Washington: IEEE Computer Society, 2014: 1669-1676. [87] XU J, YU Z, NI B, et al. Deep kinematics analysis for monocular 3D human pose estimation[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 14-19, 2020. Piscataway: IEEE, 2020: 899-908. |
[1] | TONG Hang, YANG Yan, JIANG Yongquan. Multi-head Self-attention Neural Network for Detecting EEG Epilepsy [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(2): 442-452. |
[2] | WANG Yan, LYU Yanping. Hybrid Deep CNN-Attention for Hyperspectral Image Classification [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(2): 385-395. |
[3] | LI Mingyang, CHEN Wei, WANG Shanshan, LI Jie, TIAN Zijian, ZHANG Fan. Survey on 3D Reconstruction Methods Based on Visual Deep Learning [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(2): 279-302. |
[4] | WU Xin, XU Hong, LIN Zhuosheng, LI Shengke, LIU Huilin, FENG Yue. Review of Deep Learning in Classification of Tongue Image [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(2): 303-323. |
[5] | WANG Yingjie, ZHANG Chengye, BAI Fengbo, WANG Zumin, JI Changqing. Review of Chinese Named Entity Recognition Research [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(2): 324-341. |
[6] | ZHANG Lu, LU Tianliang, DU Yanhui. Overview of Facial Deepfake Video Detection Methods [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(1): 1-26. |
[7] | LIANG Jiali, HUA Baojian, LYU Yashuai, SU Zhenyu. Loop Invariant Code Motion Algorithm for Deep Learning Operators [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(1): 127-139. |
[8] | WANG Jianzhe, WU Qin. Salient Object Detection Based on Coordinate Attention Feature Pyramid [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(1): 154-165. |
[9] | ZHANG Xiangping, LIU Jianxun. Overview of Deep Learning-Based Code Representation and Its Applications [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(9): 2011-2029. |
[10] | LI Dongmei, LUO Sisi, ZHANG Xiaoping, XU Fu. Review on Named Entity Recognition [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(9): 1954-1968. |
[11] | REN Ning, FU Yan, WU Yanxia, LIANG Pengju, HAN Xi. Review of Research on Imbalance Problem in Deep Learning Applied to Object Detection [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(9): 1933-1953. |
[12] | YANG Caidong, LI Chengyang, LI Zhongbo, XIE Yongqiang, SUN Fangwei, QI Jin. Review of Image Super-resolution Reconstruction Algorithms Based on Deep Learning [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(9): 1990-2010. |
[13] | LYU Xiaoqi, JI Ke, CHEN Zhenxiang, SUN Runyuan, MA Kun, WU Jun, LI Yidong. Expert Recommendation Algorithm Combining Attention and Recurrent Neural Network [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(9): 2068-2077. |
[14] | AN Fengping, LI Xiaowei, CAO Xiang. Medical Image Classification Algorithm Based on Weight Initialization-Sliding Window CNN [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(8): 1885-1897. |
[15] | ZENG Fanzhi, XU Luqian, ZHOU Yan, ZHOU Yuexia, LIAO Junwei. Review of Knowledge Tracing Model for Intelligent Education [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(8): 1742-1763. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/