Journal of Frontiers of Computer Science and Technology ›› 2023, Vol. 17 ›› Issue (12): 2999-3009.DOI: 10.3778/j.issn.1673-9418.2208105
• Artificial Intelligence·Pattern Recognition • Previous Articles Next Articles
SHAO Tianyang, XIAO Weidong, ZHAO Xiang
Online:
2023-12-01
Published:
2023-12-01
邵天阳,肖卫东,赵翔
SHAO Tianyang, XIAO Weidong, ZHAO Xiang. Noisy Knowledge Graph Representation Learning: a Rule-Enhanced Method[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(12): 2999-3009.
邵天阳, 肖卫东, 赵翔. 噪声知识图谱表示学习:一种规则增强的方法[J]. 计算机科学与探索, 2023, 17(12): 2999-3009.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2208105
[1] MARION P, NOWAK P, PICCINNO F. Structured context and high-coverage grammar for conversational question answering over knowledge graphs[C]//Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, Punta Cana, Nov 7-11, 2021. Stroudsburg: ACL, 2021: 8813-8829. [2] 歹杰, 李青山, 褚华, 等. 突破智慧教育: 基于图学习的课程推荐系统[J]. 软件学报, 2022, 33(10): 3656-3672. DAI J, LI Q S, CHU H, et al. Breakthrough in smart education: course recommendation system based on graph learning[J]. Journal of Software, 2022, 33(10): 3656-3672. [3] SUCHANEK F M, KASNECI G, WEIKUM G. YAGO: a core of semantic knowledge[C]//Proceedings of the 16th International Conference on World Wide Web, Banff, May 8-12, 2007. New York: ACM, 2007: 697-706. [4] MILLER G A. WordNet: a lexical database for English[J]. Communications of the ACM, 1995, 38(11): 39-41. [5] BOLLACKER K D, EVANS C, PARITOSH P, et al. Freebase: a collaboratively created graph database for structuring human knowledge[C]//Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, Vancouver, Jun 10-12, 2008. New York: ACM, 2008: 1247-1250. [6] WEST R, GABRILOVICH E, MURPHY K, et al. Knowledge base completion via search-based question answering[C]//Proceedings of the 23rd International World Wide Web Conference, Seoul, Apr 7-11, 2014. New York: ACM, 2014: 515-526. [7] HEINDORF S, POTTHAST M, STEIN B, et al. Vandalism detection in wikidata[C]//Proceedings of the 25th ACM International Conference on Information and Knowledge Management, Indianapolis, Oct 24-28, 2016. New York: ACM, 2016: 327-336. [8] STANOVSKY G, MICHAEL J, ZETTLEMOYER L, et al. Supervised open information extraction[C]//Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, New Orleans, Jun 1-6, 2018. Menlo Park: AAAI, 2018: 885-895. [9] 彭敏, 黄婷, 田纲, 等. 聚合邻域信息的联合知识表示模型[J]. 中文信息学报, 2021, 35(5): 46-54. PENG M, HUANG T, TIAN G, et al. Neighborhood aggrega-tion for knowledge graph representation[J]. Journal of Chinese Information Processing, 2021, 35(5): 46-54. [10] YANG H, LIU J F. Knowledge graph representation learning as groupoid: unifying TransE, RotatE, QuatE, ComplEx[C]//Proceedings of the 30th ACM International Conference on Information & Knowledge Management, Queensland, Nov 1-5, 2021. New York: ACM, 2021: 2311-2320. [11] ALLEN C, BALAZEVIC I, HOSPEDALES T. Interpreting knowledge graph relation representation from word embed-dings[C]//Proceedings of the 9th International Conference on Learning Representations, Austria, May 3-7, 2021:1-16. [12] XIE R B, LIU Z Y, LIN F, et al. Does William Shakespeare really write Hamlet? Knowledge representation learning with confidence[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence, the 30th Innovative Applications of Artificial Intelligence, and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence, New Orleans, Feb 2-7, 2018. Menlo Park: AAAI, 2018: 4954-4961. [13] LIN Y K, LIU Z Y, LUAN H B, et al. Modeling relation paths for representation learning of knowledge bases[C]//Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, Lisbon, Sep 17-21, 2015. Stroudsburg: ACL, 2015: 705-714. [14] BORDES A, USUNIER N, GARCIA-DURAN A, et al. Translating embeddings for modeling multi-relational data[C]//Proceedings of the 27th Annual Conference on Neural Information Processing Systems 2013, Lake Tahoe, Dec 5-8, 2013. Red Hook: Curran Associates, 2013: 2787-2795. [15] NAYYERI M, VAHDATI S, AYKUL C, et al. 5* knowledge graph embeddings with projective transformations[C]//Proceedings of the 35th AAAI Conference on Artificial Intelligence, Feb 2-9, 2021. Menlo Park: AAAI, 2021: 9064- 9072. [16] MANAGO M, KODRATOFF Y. Noise and knowledge acquisition[C]//Proceedings of the 10th International Joint Conference on Artificial Intelligence, Milan, Aug 23-28, 1987: 348-354. [17] HEINDORF S, POTTHAST M, STEIN B, et al. Towards vandalism detection in knowledge bases: corpus construction and analysis[C]//Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval, Santiago, Aug 9-13, 2015. New York: ACM, 2015: 831-834. [18] MELO A, PAULHEIM H. Detection of relation assertion errors in knowledge graphs[C]//Proceedings of the 2017 Knowledge Capture Conference, Austin, Dec 4-6, 2017. New York: ACM, 2017: 22. [19] HOFFART J, SUCHANEK F M, BERBERICH K, et al. YAGO2: a spatially and temporally enhanced knowledge base from Wikipedia[J]. Artificial Intelligence, 2013, 194: 28-61. [20] TANON T P, VRANDECIC D, SCHAFFERT S, et al. From freebase to Wikidata: the great migration[C]//Proceedings of the 25th International Conference on World Wide Web, Montreal, Apr 11-15, 2016. New York: ACM, 2016: 1419-1428. [21] JIA S B, XIANG Y, CHEN X J, et al. Triple trustworthiness measurement for knowledge graph[C]//Proceedings of the 2019 World Wide Web Conference, San Francisco, May 13-17, 2019. New York: ACM, 2019: 2865-2871. [22] HONG Y, BU C Y, WU X D. High-quality noise detection for knowledge graph embedding with rule-based triple confidence[C]//LNCS 13031: Proceedings of the 18th Pacific Rim International Conference on Artificial Intelligence, Hanoi, Nov 8-12, 2021. Cham: Springer, 2021: 572-585. [23] DONG X, GABRILOVICH E, HEITZ G, et al. Knowledge vault: a web-scale approach to probabilistic knowledge fusion[C]//Proceedings of the 20th ACM SIGKDD Inter-national Conference on Knowledge Discovery and Data Mining, New York, Aug 24-27, 2014. New York: ACM, 2014: 601-610. [24] LI X, TAHERI A, TU L F, et al. Commonsense knowledge base completion[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, Berlin, Aug 7-12, 2016. Stroudsburg: ACL, 2016: 1445-1455. [25] 宁原隆, 周刚, 卢记仓, 等. 一种融合关系路径与实体描述信息的知识图谱表示学习方法[J]. 计算机研究与发展, 2022, 59(9): 1966-1979. NING Y L, ZHOU G, LU J C, et al. A representation learning method of knowledge graph integrating relation path and entity description information[J]. Journal of Computer Research and Development, 2022, 59(9): 1966-1979. [26] ZHANG Y Q, YAO Q M, DAI W Y, et al. AutoSF: searching scoring functions for knowledge graph embedding[C]//Proceedings of the 36th IEEE International Conference on Data Engineering, Dallas, Apr 20-24, 2020. Piscataway:IEEE, 2020: 433-444. [27] MIKOLOV T, YIH S W, ZWEIG G. Linguistic regularities in continuous space word representations[C]//Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Atlanta, Jun 9-14, 2013. Menlo Park: AAAI, 2013: 746-751. [28] NICKEL M, TRESP V, KRIEGEL H P. A three-way model for collective learning on multi-relational data[C]//Proceedings of the 28th International Conference on Machine Learning, Bellevue, Jun 28-Jul 2, 2011. Madison: Omnipress, 2011: 809-816. [29] YANG B S, YIH S W, HE X D, et al. Embedding entities and relations for learning and inference in knowledge bases[C]//Proceedings of the 3rd International Conference on Learning Representations, San Diego, May 7-9, 2015: 1-12. [30] TROUILLON T, WELBL J, RIEDEL S, et al. Complex embeddings for simple link prediction[C]//Proceedings of the 33rd International Conference on Machine Learning, New York, Jun 19-24, 2016: 2071-2080. [31] SOCHER R, CHEN D Q, MANNING C D, et al. Reasoning with neural tensor networks for knowledge base completion[C]//Proceedings of the 26th International Conference on Neural Information Processing Systems, Lake Tahoe, Dec 5-8, 2013. Red Hook: Curran Associates, 2013: 926-934. [32] DETTMERS T, MINERVINI P, STENETORP P, et al. Convolutional 2D knowledge graph embeddings[C]//Pro-ceedings of the 32nd AAAI Conference on Artificial Intel-ligence, New Orleans, Feb 2-7, 2018. Menlo Park: AAAI, 2018: 1811-1818. [33] NGUYEN T D, NGUYEN D Q, PHUNG D. A novel embedding model for knowledge base completion based on convolutional neural network[C]//Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, New Orleans, Jun 1-6, 2018. Menlo Park: AAAI, 2018: 327-333. [34] WANG Z, ZHANG J W, FENG J L, et al. Knowledge graph embedding by translating on hyperplanes[C]//Proceedings of the 28th AAAI Conference on Artificial Intelligence, Quebec City, Jul 27 -31, 2014. Menlo Park: AAAI, 2014: 1112-1119. [35] LIN Y K, LIU Z Y, SUN M S, et al. Learning entity and relation embeddings for knowledge graph completion[C]//Proceedings of the 29th AAAI Conference on Artificial Intelligence, Austin, Jan 25-30, 2015. Menlo Park: AAAI, 2015: 2181-2187. [36] CAO Z S, XU Q Q, YANG Z Y, et al. Dual quaternion knowledge graph embeddings[C]//Proceedings of the 35th AAAI Conference on Artificial Intelligence, Feb 2-9, 2021. Menlo Park: AAAI, 2021: 6894-6902. [37] NIU G L, LI B, ZHANG Y F, et al. AutoETER: automated entity type representation for knowledge graph embedding[C]//Findings of the Association for Computational Linguistics, Nov 16-20, 2020. Stroudsburg: ACL, 2020: 1172-1181. [38] NIU G L, ZHANG Y F, LI B, et al. Rule-guided composi-tional representation learning on knowledge graphs[C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence, the 32nd Innovative Applications of Artificial Intelligence Conference, the 10th AAAI Symposium on Educational Advances in Artificial Intelligence, New York, Feb 7-12, 2020. Menlo Park: AAAI, 2020: 2950-2958. [39] SHAO T Y, LI X Y, ZHAO X, et al. DSKRL: a dissimilarity-support-aware knowledge representation learning framework on noisy knowledge graph[J]. Neurocomputing, 2021, 461: 608-617. |
[1] | QIAO Zifeng, QIN Hongchao, HU Jingjing, LI Ronghua, WANG Guoren. Knowledge Graph Completion Algorithm with Multi-view Contrastive Learning [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(4): 1001-1009. |
[2] | ZHANG Xishuo, LIU Lin, WANG Hailong, SU Guibin, LIU Jing. Survey of Entity Relationship Extraction Methods in Knowledge Graphs [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(3): 574-596. |
[3] | LIN Sui, LU Chaohai, JIANG Wenchao, LIN Xiaoshan, ZHOU Weilin. Few-Shot Knowledge Graph Completion Based on Selective Attention [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(3): 646-658. |
[4] | CHEN Jiaxing, HU Zhiwei, LI Ru, HAN Xiaoqi, LU Jiang, YAN Zhichao. Knowledge Graph Link Prediction Fusing Description and Structural Features [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(2): 486-495. |
[5] | CHANG Yu, WANG Gang, ZHU Peng, KONG Lingfei, HE Jingheng. Survey of Research on Construction Method of Industry Internet Security Knowledge Graph [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(2): 279-300. |
[6] | JIANG Hongxun, ZHANG Lin, SUN Caihong. Knowledge Graph-Based Video Classification Algorithm for Film and Television Drama [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(1): 161-174. |
[7] | CUI Huanqing, SONG Weiqing, YANG Junzhu. Knowledge Ripple Graph Convolutional Network for Recommendation [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(9): 2209-2218. |
[8] | QIAN Fulan, WANG Wenxue, ZHENG Wenjie, CHEN Jie, ZHAO Shu. Reserved Hierarchy-Based Knowledge Graph Embedding for Link Prediction [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(9): 2174-2183. |
[9] | YAN Zhaoyao, DING Cangfeng, MA Lerong, CAO Lu, YOU Hao. Advances in Knowledge Graph Embedding Based on Graph Neural Networks [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(8): 1793-1813. |
[10] | LI Zhijie, HAN Ruirui, LI Changhua, ZHANG Jie, SHI Haoqi. Entity Relation Extraction Method Integrating Pre-trained Model and Attention [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(6): 1453-1462. |
[11] | PENG Yanfei, ZHANG Ruisi, WANG Ruihua, GUO Jialong. Survey on Few-Shot Knowledge Graph Completion Technology [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(6): 1268-1284. |
[12] | ZHAO Yehui, LIU Lin, WANG Hailong, HAN Haiyan, PEI Dongmei. Survey of Knowledge Graph Recommendation System Research [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(4): 771-791. |
[13] | HAN Hu, HAO Jun, ZHANG Qiankun, MENG Tiantian. Knowledge-Enhanced Interactive Attention Model for Aspect-Based Sentiment Analysis [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(3): 709-718. |
[14] | YIN Hua, XIAO Shiran, CHEN Zhiquan, HU Zhensheng, LONG Yongchao. Knowledge Graph Completion Method Based on Multi-semantic Relation Embedding [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(2): 467-477. |
[15] | MA Li, YAO Weifan. Link Prediction Method Combining Relational Path and Directed Subgraph Reasoning [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(2): 478-488. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/