Journal of Frontiers of Computer Science and Technology ›› 2024, Vol. 18 ›› Issue (2): 279-300.DOI: 10.3778/j.issn.1673-9418.2304081
• Frontiers·Surveys • Previous Articles Next Articles
CHANG Yu, WANG Gang, ZHU Peng, KONG Lingfei, HE Jingheng
Online:
2024-02-01
Published:
2024-02-01
常钰,王钢,朱鹏,孔令飞,何京恒
CHANG Yu, WANG Gang, ZHU Peng, KONG Lingfei, HE Jingheng. Survey of Research on Construction Method of Industry Internet Security Knowledge Graph[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(2): 279-300.
常钰, 王钢, 朱鹏, 孔令飞, 何京恒. 工业互联网安全知识图谱构建研究综述[J]. 计算机科学与探索, 2024, 18(2): 279-300.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2304081
[1] 国家能源局. 2021年全国电力工业统计数据[EB/OL]. (2022-01-26) [2023-04-19]. http://www.nea.gov.cn/2022-01/26/c_1310441589.htm. National Energy Administration. 2021 National power industry statistics[EB/OL]. (2022-01-26) [2023-04-19]. http://www.nea.gov.cn/2022-01/26/c_1310441589.htm. [2] 王青, 孙頔, 张海霞, 等. 中国光伏行业2021年回顾与2022年展望[J]. 电气时代, 2022(5): 20-28. WANG Q, SUN D, ZHANG H X, et al. A review of China’s photovoltaic industry in 2021 and prospects for 2022[J]. Electric Age, 2022(5): 20-28. [3] 徐伟, 孔坚, 毛庆梅, 等. 工业控制系统安全现状及应对策略[J]. 网络安全技术与应用, 2021(9): 115-117. XU W, KONG J, MAO Q M, et al. Safety status and countermeasures of industry control system[J]. Network Security Technology & Application, 2021(9): 115-117. [4] 郑少波, 徐伟, 石彬. 工业控制系统安全现状[J]. 网络安全技术与应用, 2020(5): 111-113. ZHENG S B, XU W, SHI B. Safety status of industry control system[J]. Network Security Technology & Application, 2020(5): 111-113. [5] 360数字安全集团. 2022全球高级持续性威胁(APT)研究报告[EB/OL]. (2023-01-08) [2023-04-19]. https://360.net/about/news/article63c8e20258f02a002a0d76de. 360 Digital Security Group. 2022 Global advanced persistent threat(APT) research report[EB/OL]. (2023-01-08) [2023-04-19]. https://360.net/about/news/article63c8e20258f02a002a0d76de. [6] 绿盟科技. 践行安全知识图谱, 携手迈进认知智能[EB/OL]. (2022-05-23) [2023-04-19]. https://www.nsfocus.com.cn/html/2022/137_0523/179.html. NSFOCUS. Practice the safety knowledge graph, and work together to advance cognitive intelligence[EB/OL]. (2022-05-23) [2023-04-19]. https://www.nsfocus.com.cn/html/2022/137_0523/179.html. [7] 绿盟科技. 安全知识图谱[EB/OL]. (2022-01-07) [2023-04-19]. https://www.zhihu.com/column/c_1446900744649240576. NSFOCUS. Security knowledge graph[EB/OL]. (2022-01-07) [2023-04-19]. https://www.zhihu.com/column/c_1446900744649240576. [8] BERNERS-LEE T. What the semantic web can represent[Z]. 1998. [9] BERNERS-LEE T. Semantic web road map[Z]. 1998. [10] BERNERS-LEE T, CHEN Y, CHILTON L, et al. Tabulator: exploring and analyzing linked data on the semantic web[C]//Proceedings of the 3rd International Semantic Web User Interaction Workshop, Athens, Nov 6, 2006. [11] MILLER G A. Wordnet: a lexical database for English[J]. Commun ACM, 1995, 38(11): 39-41. [12] BAKER C F, FILLMORE C J, LOWE J B. The Berkeley framenet project[C]//Proceedings of the 36th Annual Meeting of the Association for Computational Linguistics, Montreal, Aug, 1998. Stroudsburg: ACL, 1998. [13] DONG Z, DONG Q. HowNet—a hybrid language and knowledge resource[C]//Proceedings of the 2003 International Conference on Natural Language Processing and Knowledge Engineering, Beijing, Oct 26-29, 2003. Piscataway: IEEE, 2003: 820-824. [14] SPEER R, CHIN J, HAVASI C. ConceptNet 5.5: an open multi-lingual graph of general knowledge[J]. arXiv:1612.03975, 2016. [15] BOLLACKER K, EVANS C, PARITOSH P, et al. Freebase: a collaboratively created graph database for structuring human knowledge[C]//Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, Vancouver, Jun 10-12, 2008. New York: ACM, 2008: 1247-1250. [16] AUER S, BIZER C, KOBILAROV G, et al. DBpedia: a nucleus for a web of open data[C]//Proceedings of the 6th International Semantic Web Conference, Busan, Nov 11-15, 2007. Berlin, Heidelberg: Springer, 2007: 722-735. [17] SUCHANEK F M, KASNECI G, WEIKUM G. Yago: a core of semantic knowledge[C]//Proceedings of the 16th International Conference on World Wide Web, Banff, May 8-12, 2007. New York: ACM, 2007: 697-706. [18] RESEARCH W. Wolframalpha[EB/OL]. (2023-01-03) [2023-07-28]. https://www.wolframalpha.com/. [19] MITCHELL T, COHEN W, HRUSCHKA E, et al. Never-ending learning[J]. Communications of the ACM, 2018, 61(5): 103-115. [20] NAVIGLI R, PONZETTO S P. BabelNet: the automatic construction, evaluation and application of a wide-coverage multilingual semantic network[J]. Artificial Intelligence, 2012, 193: 217-250. [21] VRANDE?I? D, KR?TZSCH M. Wikidata: a free collaborative knowledgebase[J]. Communications of the ACM, 2014, 57(10): 78-85. [22] DONG X, GABRILOVICH E, HEITZ G, et al. Knowledge vault: a web-scale approach to probabilistic knowledge fusion[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, Aug 24-27, 2014. New York: ACM, 2014: 601-610. [23] NIU X, SUN X, WANG H, et al. Zhishi.Me-weaving Chinese linking open data[C]//Proceedings of the 10th International Semantic Web Conference, Bonn, Oct 23-27, 2011. Berlin, Heidelberg: Springer, 2011: 205-220. [24] WANG Z, LI J Z, WANG Z, et al. XLore: a large-scale English-Chinese bilingual knowledge graph[C]//Proceedings of the 12th International Semantic Web Conference and the 1st Australasian Semantic Web Conference, Sydney, Oct 21-25, 2013. Berlin,Heidelberg: Springer, 2013: 121-124. [25] Openkg.Cn[EB/OL]. [2023-07-28]. http://openkg.cn/. [26] XU B, XU Y, LIANG J, et al. CN-DBpedia: a never-ending Chinese knowledge extraction system[C]//Proceedings of the 30th International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems, Arras, Jun 27-30, 2017. Cham: Springer, 2017: 428-438. [27] 中国电子技术标准化研究院. 认知智能时代: 知识图谱实践案例集[J]. 信息技术与标准化, 2021(3): 5. China Electronics Standardization Institute. The era of cognitive intelligence: knowledge graph practice case set[J]. Information Technology & Standardization, 2021(3): 5. [28] 董聪, 姜波, 卢志刚, 等. 面向网络空间安全情报的知识图谱综述[J]. 信息安全学报, 2020, 5(5): 56-76. DONG C, JIANG B, LU Z G, et al. Knowledge graph for cyberspace security intelligence: a survey[J]. Journal of Cyber Security, 2020, 5(5): 56-76. [29] 丁兆云, 刘凯, 刘斌, 等. 网络安全知识图谱研究综述[J]. 华中科技大学学报(自然科学版), 2021, 49(7): 79-91. DING Z Y, LIU K, LIU B, et al. Survey of cyber security knowledge graph[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2021, 49(7): 79-91. [30] 尚文利, 朱鹏程, 王博文, 等. 面向威胁情报的知识图谱构建关键技术[J]. 自动化博览, 2023, 40(1): 15-19. SHANG W L, ZHU P C, WANG B W, et al. Key technologies for building knowledge graphs for threat intelligence[J]. Automation Panorama, 2023, 40(1): 15-19. [31] 王晓狄, 黄诚, 刘嘉勇. 面向网络安全开源情报的知识图谱研究综述[J]. 信息网络安全, 2023, 23(6): 11-21. WANG X D, HUANG C, LIU J Y. A survey of cyber security open-source intelligence knowledge graph[J]. Netinfo Security, 2023, 23(6): 11-21. [32] GAO C, ZHANG X, HAN M, et al. A review on cyber security named entity recognition[J]. Frontiers of Information Technology & Electronic Engineering, 2021, 22(9): 1153-1168. [33] LIU K, WANG F, DING Z, et al. Recent progress of using knowledge graph for cybersecurity[J]. Electronics, 2022, 11(15): 2287. [34] OLTRAMARI A, CRANOR L F, WALLS R J, et al. Computational ontology of network operations[C]//Proceedings of the 2015 IEEE Military Communications Conference, Tampa, Oct 26-28, 2015. Piscataway: IEEE, 2015: 318-323. [35] BEN-ASHER N, HUTCHINSON S, OLTRAMARI A. Characterizing network behavior features using a cyber-security ontology[C]//Proceedings of the 35th IEEE Military Communications Conference, Baltimore, Nov 1-3, 2016. Piscataway: IEEE, 2016: 758-763. [36] IANNACONE M, BOHN S, NAKAMURA G, et al. Developing an ontology for cyber security knowledge graphs[C]//Proceedings of the 10th Annual Cyber and Information Security Research Conference, Oak, Apr 7-9, 2015. New York: ACM, 2015: 1-4. [37] SYED Z, PADIA A, FININ T, et al. UCO: a unified cybersecurity ontology[C]//Proceedings of the Workshops of the 30th AAAI Conference on Artificial Intelligence: Artificial Intelligence for Cyber Security, Phoenix, Feb 12-17, 2016. Menlo Park: AAAI, 2016: 195-202. [38] KRUPKA G R. SRA: description of the SRA system as used for MUC-6[C]//Proceedings of the 6th Message Understanding Conference, Columbia, Nov 6-8, 1995. Stroudsburg: ACL, 1995: 221-236. [39] HUMPHREYS K, GAIZAUSKAS R, AZZAM S, et al. University of Sheffield: description of the LaSIE-II system as used for MUC-7[C]//Proceedings of the 7th Message Understanding Conference, Fairfax, Apr 29-May 1, 1998. Stroudsburg: ACL, 1998. [40] KRUPKA G R, HAUSMAN K. Description of the NetOwl extractor system as used for MUC-7[C]//Proceedings of the 7th Message Understanding Conference, Fairfax, Apr 29-May 1, 1998. Stroudsburg: ACL, 1998. [41] BLACK W J, RINALDI F, MOWATT D. Facile: description of the NE system used for MUC-7[C]//Proceedings of the 7th Message Understanding Conference, Fairfax, Apr 29-May 1, 1998. Stroudsburg: ACL, 1998. [42] APPELT D E, HOBBS J R, BEAR J, et al. FASTUS:a finite-state processor for information extraction from real-world text[C]//Proceedings of the 13th International Joint Conference on Artificial Intelligence, Chambery, Aug 28-Sep 3, 1993. San Francisco: Morgan Kaufmann Publishers Inc, 1993: 1172-1178. [43] MIKHEEV A, GROVER C, MOENS M. Description of the LTG system used for MUC-7[C]//Proceedings of the 7th Message Understanding Conference, Fairfax, Apr 29-May 1, 1998. Stroudsburg: ACL, 1998. [44] BIKEL D M, SCHWARTZ R, WEISCHEDEL R M. An algorithm that learns what's in a name[J]. Machine Learning, 1999, 34: 211-231. [45] ZHOU G, SU J. Named entity recognition using an HMM-based chunk tagger[C]//Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics, Philadelphia, Jul 6-12, 2002. Stroudsburg: ACL, 2002: 473-480. [46] BORTHWICK A, STERLING J, AGICHTEIN E, et al. NYU: description of the MENE named entity system as used in MUC-7[C]//Proceedings of the 7th Message Understanding Conference, Fairfax, Apr 29-May 1, 1998. Stroudsburg: ACL, 1998. [47] BENDER O, OCH F J, NEY H. Maximum entropy models for named entity recognition[C]//Proceedings of the 7th Conference on Natural Language Learning at HLT-NAACL, Edmonton, May 31-Jun 1, 2003. Stroudsburg: ACL, 2003: 148-151. [48] BRIDGES R A, JONES C L, IANNACONE M D, et al. Automatic labeling for entity extraction in cyber security[J]. arXiv:1308.4941, 2013. [49] JOSHI A, LAL R, FININ T, et al. Extracting cybersecurity related linked data from text[C]//Proceedings of the 7th IEEE International Conference on Semantic Computing, Irvine, Sep 16-18, 2013. Washington: IEEE Computer Society, 2014: 252-259. [50] 贾焰, 亓玉璐, 尚怀军, 等. 一种构建网络安全知识图谱的实用方法[J]. Engineering, 2018, 4(1): 117-133. JIA Y, QI Y L, SHANG H J, et al. A practical approach to constructing a knowledge graph for cybersecurity[J]. Engineering, 2018, 4(1): 117-133. [51] LIAO X, YUAN K, WANG X, et al. Acing the IOC game: toward automatic discovery and analysis of open-source cyber threat intelligence[C]//Proceedings of the 23rd ACM Conference on Computer and Communications Security, New York, Oct 24-28, 2016. New York: ACM, 2016: 755-766. [52] COLLOBERT R, WESTON J, BOTTOU L, et al. Natural language processing (almost) from scratch[J]. Journal of Machine Learning Research, 2011, 12: 2493-2537. [53] YAO L, LIU H, LIU Y, et al. Biomedical named entity recognition based on deep neutral network[J]. International Journal of Hybrid Information Technology, 2015, 8: 279-288. [54] STRUBELL E, VERGA P, BELANGER D, et al. Fast and accurate entity recognition with iterated dilated convolutions[C]//Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, Copenhagen, Sep 7-11, 2017. Stroudsburg: ACL, 2017: 2670-2680. [55] HUANG Z, WEI X, KAI Y. Bidirectional LSTM-CRF models for sequence tagging[J]. arXiv:1508.01991, 2015. [56] SIMRAN K, SRIRAM S, VINAYAKUMAR R, et al. Deep learning approach for intelligent named entity recognition of cyber security[C]//Proceedings of the 5th International Symposium on Signal Processing and Intelligent Recognition Systems, Trivandrum, Dec 18-21, 2019. Singapore: Springer, 2020: 163-172. [57] QIN Y, SHEN G, ZHAO W, et al. A network security entity recognition method based on feature template and CNN-BILSTM-CRF[J]. Frontiers of Information Technology and Electronic Engineering, 2019, 20(6): 872-884. [58] GAO C, ZHANG X, LIU H. Data and knowledge-driven named entity recognition for cyber security[J]. Cybersecurity, 2021, 4: 9. [59] LI T, HU Y, JU A, et al. Adversarial active learning for named entity recognition in cybersecurity[J]. Computers, Materials and Continua, 2021, 66(1): 407-420. [60] RADFORD A, NARASIMHAN K, SALIMANS T, et al. Improving language understanding by generative pre-training[Z]. 2018. [61] RADFORD A, WU J, CHILD R, et al. Language models are unsupervised multitask learners[J]. OpenAI Blog, 2019, 1(8): 9. [62] BROWN T B, MANN B, RYDER N, et al. Language models are few-shot learners[J]. arXiv:2005.14165, 2020. [63] OPENAI. GPT-4 technical report[J]. arXiv:2303.08774, 2023. [64] DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[J]. arXiv:1810.04805, 2019. [65] YANG Z, DAI Z, YANG Y, et al. XLNet: generalized autoregressive pretraining for language understanding[C]//Proceedings of the 33rd International Conference on Neural Information Processing Systems, Vancouver, Dec 8-14, 2019. Red Hook: Curran Associates Inc, 2019: 5753-5763. [66] JO H, LEE Y, SHIN S. Vulcan: automatic extraction and analysis of cyber threat intelligence from unstructured text[J]. Computers and Security, 2022, 120: 102763. [67] 杨秀璋, 彭国军, 李子川, 等. 基于Bert和BiLSTM-CRF的APT攻击实体识别及对齐研究[J]. 通信学报, 2022, 43(6): 58-70. YANG X Z, PENG G J, LI Z C, et al. Research on entity recognition and alignment of APT attack based on BERT and BiLSTM-CRF[J]. Journal on Communications, 2022, 43(6): 58-70. [68] ZHANG K, CHEN X, JING Y, et al. Research on named entity recognition method of network threat intelligence[C]//Proceedings of the 19th China Cyber Security Annual Conference, Beijing, Aug 16-17, 2022. Singapore: Springer Nature Singapore, 2022: 213-224. [69] ZHOU S, LIU J, ZHONG X, et al. Named entity recognition using BERT with whole world masking in cybersecurity domain[C]//Proceedings of the 6th IEEE International Conference on Big Data Analytics, Xiamen, Mar 5-8, 2021. New York: IEEE, 2021: 316-320. [70] 谢博, 申国伟, 郭春, 等. 基于残差空洞卷积神经网络的网络安全实体识别方法[J]. 网络与信息安全学报, 2020, 6(5): 126-138. XIE B, SHEN G W, GUO C, et al. Cyber security entity recognition method based on residual dilation convolution neural network[J]. Chinese Journal of Network and Information Security, 2020, 6(5): 126-138. [71] 苏剑林. Gplinker:基于globalpointer的实体关系联合抽取[EB/OL]. (2022-01-30) [2023-04-19]. https://spaces.ac.cn/archives/8888. SU J L. Gplinker: entity relationship joint extraction based on globalpointer[EB/OL]. (2022-01-30) [2023-04-19]. https://spaces.ac.cn/archives/8888. [72] YAN H, GUI T, DAI J, et al. A unified generative framework for various NER subtasks[C]//Proceedings of the Joint Conference of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, Aug 1-6, 2021. Stroudsburg: ACL, 2021: 5808-5822. [73] LI J, FEI H, LIU J, et al. Unified named entity recognition asword-word relation classification[C]//Proceedings of the 36th AAAI Conference on Artificial Intelligence, Vancouver, Feb 22-Mar 1,2022. Menlo Park: AAAI, 2022: 10965-10973. [74] WANG S, SUN X, LI X, et al. GPT-NER: named entity recognition via large language models[J]. arXiv:2304.10428, 2023. [75] LI X, ZHU X D, MA Z, et al. Are ChatGPT and GPT-4 general-purpose solvers for financial text analytics? An examination on several typical tasks[J]. arXiv:2305.05862, 2023. [76] WANG X, CHEN R, SONG B, et al. A method for extracting unstructured threat intelligence based on dictionary template and reinforcement learning[C]//Proceedings of the 24th IEEE International Conference on Computer Supported Cooperative Work in Design, Dalian, May 5-7, 2021. Piscataway: IEEE, 2021: 262-267. [77] NATIV Y T, SHALEV S. TheZoo aka malware DB[EB/OL]. (2023-04-04) [2023-04-19]. https://github.com/ytisf/theZoo. [78] 李瑞科, 刘元, 廖雷, 等. 1999—2018年安全漏洞数据集[EB/OL]. (2019-12-30) [2023-04-19]. http://www.csdata.org/p/315/. LI R K, LIU Y, LIAO L, et al. 1999—2018 security vulnerability dataset[EB/OL]. (2019-12-30) [2023-04-19]. http://www.csdata.org/p/315/. [79] WANG Y, SUN C, WU Y, et al. UniRE: a unified label space for entity relation extraction[C]//Proceedings of the Joint Conference of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, Aug, 2021. Stroudsburg: ACL, 2021: 220-231. [80] JACKADUMA. Secbert[EB/OL]. (2022-01-24) [2023-06-09]. https://huggingface.co/jackaduma/SecBERT. [81] BAYER M, KUEHN P, SHANEHSAZ R, et al. CySecBERT: a domain-adapted language model for the cybersecurity domain[J]. arXiv:2212.02974, 2022. [82] HOBBS J R. Resolving pronoun references[J]. Lingua, 1978, 44(4): 311-338. [83] GROSZ B J, WEINSTEIN S, JOSHI A K. Centering: a framework for modeling the local coherence of discourse[J]. Comput Linguist, 1995, 21(2): 203-225. [84] RAGHUNATHAN K, LEE H, RANGARAJAN S, et al. A multi-pass sieve for coreference resolution[C]//Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing, Cambridge, Oct 9-11, 2010. Stroudsburg: ACL, 2010: 492-501. [85] 陈远哲, 匡俊, 刘婷婷, 等. 共指消解技术综述[J]. 华东师范大学学报(自然科学版), 2019(5): 16-35. CHEN Y Z, KUANG J, LIU T T, et al. A survey on coreference resolution[J]. Journal of East China Normal University (Natural Science), 2019(5): 16-35. [86] RAHMAN A, NG V. Narrowing the modeling gap: a cluster-ranking approach to coreference resolution[J]. Journal of Artificial Intelligence Research, 2011, 40(1): 469-521. [87] MCCALLUM A, WELLNER B. Conditional models of identity uncertainty with application to noun coreference[C]//Proceedings of the 18th Annual Conference on Neural Information Processing Systems, Vancouver, Dec 1, 2004. Cambridge: MIT Press, 2004: 905-912. [88] 黄伟民. 基于预训练语言模型的中文共指消解方法研究[D]. 广州: 华南理工大学, 2021. HUANG W M. Research on Chinese coreference resolution based on pre-trained language model[D]. Guangzhou: South China University of Technology, 2021. [89] WISEMAN S, RUSH A M, SHIEBER S M. Learning global features for coreference resolution[C]//Proceedings of the 15th Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Austin, Nov 1-5, 2016. Stroudsburg: ACL, 2016: 994-1004. [90] LEE K, HE L, LEWIS M, et al. End-to-end neural coreference resolution[C]//Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, Copenhagen, Sep 7-11, 2017. Stroudsburg: ACL, 2017: 188-197. [91] LEE K, HE L, ZETTLEMOYER L. Higher-order coreference resolution with coarse-to-fine inference[C]//Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Louisiana, Jun 1-6, 2018. Stroudsburg: ACL, 2018: 687-692. [92] JOSHI M, LEVY O, ZETTLEMOYER L, et al. BERT for coreference resolution: baselines and analysis[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, Hong Kong, China, Nov 3-7, 2019. Stroudsburg: ACL, 2019: 5803-5808. [93] JOSHI M, CHEN D Q, LIU Y H, et al. SpanBERT: improving pretraining by representing and predicting spans[J]. Transactions of the Association for Computational Linguistics, 2020, 8: 64-77. [94] 唐思宇, 李赛飞, 张丽杰. 基于neo4j的网络安全知识图谱构建分析[J]. 信息安全与通信保密, 2022(8): 60-70. TANG S Y, LI S F, ZHANG L J. Research on the construction of cyber security knowledge graph based on neo4j[J]. Information Security and Communications Privacy, 2022(8): 60-70. [95] 张晗, 胡永进, 郭渊博, 等. 信息安全领域内实体共指消解技术研究[J]. 通信学报, 2020, 41(2): 165-175. ZHANG H, HU Y J, GUO Y B, et al. Research on coreference resolution technology of entity in information security[J]. Journal on Communications, 2020, 41(2): 165-175. [96] 周宁, 靳高雅, 石雯茜. 融合神经网络与全局推理的实体共指消解算法[J]. 数据分析与知识发现, 2022, 6(8): 75-83. ZHOU N, JIN G Y, SHI W Q. Algorithm for entity coreference resolution withneural network and global reasoning[J]. Data Analysis and Knowledge Discovery, 2022, 6(8): 75-83. [97] LI Y, GUO Y, FANG C, et al. A novel threat intelligence information extraction system combining multiple models[J]. Security and Communication Networks, 2022: 8477260. [98] APPELT D E, HOBBS J R, BEAR J, et al. SRI international FASTUS system MUC-6 test results and analysis[C]//Proceedings of the 6th Message Understanding Conference, Columbia, Nov 6-8, 1995. Stroudsburg: ACL, 1995: 237-248. [99] GRISHMAN R. PROTEUS parser reference manual[Z]. PROTEUS Project Memorandum, 1986. [100] YANGARBER R, GRISHMAN R. NYU: description of the Proteus/PET system as used for MUC-7 ST[C]//Proceedings of the 7th Message Understanding Conference, Fairfax, Apr 29-May 1, 1998. Stroudsburg: ACL, 1998. [101] KAMBHATLA N. Combining lexical, syntactic, and semantic features with maximum entropy models for extracting relations[C]//Proceedings of the 42nd Annual Meeting of the Association for Computational Linguistics, Barcelona, Jul 21-26, 2004. Stroudsburg: ACL, 2004. [102] ZHOU G D, SU J, ZHANG J, et al. Exploring various knowledge in relation extraction[C]//Proceedings of the 43rd Annual Meeting of the Association for Computational Linguistics, Ann Arbor, Jun 25-30, 2005. Stroudsburg: ACL, 2005: 427-434. [103] SUN X, DONG L. Feature-based approach to Chinese term relation extraction[C]//Proceedings of the 2019 International Conference on Signal Processing Systems, Singapore, May 15-17, 2009. Washington: IEEE Computer Society, 2009: 410-414. [104] JONES C L, BRIDGES R A, HUFFER K M T, et al. Towards a relation extraction framework for cyber-security concepts[C]//Proceedings of the 10th Annual Cyber and Information Security Research Conference, Oak Ridge, Apr 7-9, 2015. New York: ACM, 2015: 1-4. [105] BANKO M, CAFARELLA M J, SODERLAND S, et al. Open information extraction from the web[C]//Proceedings of the 20th International Joint Conference on Artificial Intelligence, Hyderabad, Jan 6-12, 2007: 2670-2676. [106] 李涛. 威胁情报知识图谱构建与应用关键技术研究[D]. 郑州: 中国人民解放军战略支援部队信息工程大学, 2020. LI T. Research on key technologies for construction and application of threat intelligence knowledge graph[D]. Zhengzhou: PLA Strategic Support Force Information Engineering University, 2020. [107] PINGLE A, PIPLAI A, MITTAL S, et al. RelExt: relation extraction using deep learning approaches for cybersecurity knowledge graph improvement[C]//Proceedings of the 11th IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, Vancouver, Aug 27-30, 2019. New York: ACM, 2019: 879-886. [108] MITTAL S, DAS P K, MULWAD V, et al. CyberTwitter: using twitter to generate alerts for cybersecurity threats and vulnerabilities[C]//Proceedings of the 2016 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, San Francisco, Aug 18-21, 2016. Piscataway: IEEE, 2016: 860-867. [109] WU S, HE Y. Enriching pre-trained language model with entity information for relation classification[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management, Beijing, Nov 3-7, 2019. New York: ACM, 2019: 2361-2364. [110] SARHAN I, SPRUIT M. Open-CyKG: an open cyber threat intelligence knowledge graph[J]. Knowledge-Based Systems, 2021, 233: 107524. [111] SOARES L B, FITZGERALD N, LING J, et al. Matching the blanks: distributional similarity for relation learning[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Florence, Jul 28-Aug 2, 2019. Stroudsburg: ACL, 2019: 2895-2905. [112] WAN Z, CHENG F, MAO Z, et al. GPT-RE: in-context learning for relation extraction using large language models[C]//Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, Singapore, Dec 6-10, 2023. Stroudsburg: ACL, 2023:3534-3547. [113] LI Q, JI H. Incremental joint extraction of entity mentions and relations[C]//Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, Baltimore, Jun 22-27, 2014. Stroudsburg: ACL, 2014: 402-412. [114] MIWA M, SASAKI Y. Modeling joint entity and relation extraction with table representation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, Doha, Oct 25-29, 2014. Stroudsburg: ACL, 2014: 1858-1869. [115] MIWA M, BANSAL M. End-to-end relation extraction using LSTMs on sequences and tree structures[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, Berlin, Aug 7-12, 2016. Stroudsburg: ACL, 2016: 1105-1116. [116] 谢博. 基于深度学习的中文网络威胁情报信息抽取技术研究[D]. 贵阳: 贵州大学, 2022. XIE B. Research on information extraction technology of Chinese network threat intelligence based on deep learning[D]. Guiyang: Guizhou University, 2022. [117] WANG Y, YU B, ZHANG Y, et al. TPLinker: single-stage joint extraction of entities and relations through token pair linking[C]//Proceedings of the 28th International Conference on Computational Linguistics, Barcelona, Dec 8-13, 2020: 1572-1582. [118] YAN Z, ZHANG C, FU J, et al. A partition filter network for joint entity and relation extraction[C]//Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, Punta Cana, Nov 7-11, 2021. Stroudsburg: ACL, 2021: 185-197. [119] MINTZ M, BILLS S, SNOW R, et al. Distant supervision for relation extraction without labeled data[C]//Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP, Singapore, Aug 2-7, 2009. Stroudsburg: ACL, 2009: 1003-1011. [120] RIEDEL S, YAO L, MCCALLUM A. Modeling relations and their mentions without labeled text[C]//Proceedings of the 2010 European Conference on Machine Learning and Knowledge Discovery in Databases, Barcelona, Sep 20-24, 2010. Berlin, Heidelberg: Springer, 2010: 148-163. [121] HOFFMANN R, ZHANG C, LING X, et al. Knowledge-based weak supervision for information extraction of overlapping relations[C]//Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, Portland, Jun 19-24, 2011. Stroudsburg: ACL, 2011: 541-550. [122] SURDEANU M, TIBSHIRANI J, NALLAPATI R, et al. Multi-instance multi-label learning for relation extraction[C]//Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, Jeju Island, Jul 12-14, 2012. Stroudsburg: ACL, 2012: 455-465. [123] ZENG D, LIU K, CHEN Y, et al. Distant supervision for relation extraction via piecewise convolutional neural networks[C]//Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, Lisbon, Sep 17-22, 2015. Stroudsburg: ACL, 2015: 1753-1762. [124] 王会勇, 安康, 张晓明. 结合领域先验词汇的远程监督关系抽取模型[J]. 计算机应用与软件, 2022, 39(8): 34-43. WANG H Y, AN K, ZHANG X M. Distant supervision relation extraction model combined with domain priori words[J]. Computer Applications and Software, 2022, 39(8): 34-43. [125] SHEN G, WANG W, MU Q, et al. Data-driven cybersecurity knowledge graph construction for industrial control system security[J]. Wireless Communications and Mobile Computing, 2020: 1-13. [126] VASHISHTH S, JOSHI R, PRAYAGA S S, et al. Reside: improving distantly-supervised neural relation extraction using side information[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Oct 31-Nov 4, 2018. Stroudsburg: ACL, 2018: 1257-1266. [127] MOREIRA J, OLIVEIRA C, MACEDO D, et al. Distantly-supervised neural relation extraction with side information using BERT[C]//Proceedings of the 2020 International Joint Conference on Neural Networks Held as Part of the IEEE World Congress on Computational Intelligence, Glasgow, Jul 19-24, 2020. Piscataway: IEEE , 2020: 1-7. [128] ALT C, HUEBNER M, HENNIG L, et al. Fine-tuning pre-trained transformer language models to distantly supervised relation extraction[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Florence, Jul 28-Aug 2, 2019. Stroudsburg: ACL, 2019: 1388-1398. [129] CHRISTOU D, TSOUMAKAS G. Improving distantly-supervised relation extraction through BERT-based label and instance embeddings[J]. IEEE Access, 2021, 9: 62574-62582. [130] LI R, YANG C, LI T, et al. MiDTD: a simple and effective distillation framework for distantly supervised relation extraction[J]. ACM Transactions on Information Systems, 2022, 40(4): 1-32. [131] KIM G, LEE C, JO J, et al. Automatic extraction of named entities of cyber threats using a deep Bi-LSTM-CRF network[J]. International Journal of Machine Learning and Cybernetics, 2020, 11(10): 2341-2355. [132] LIM S K, MUIS A O, LU W, et al. MalwareTextDB: a database for annotated malware articles[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, Vancouver, Jul 31-Aug 5, 2017. Stroudsburg: ACL, 2017: 1557-1567. |
[1] | LIN Sui, LU Chaohai, JIANG Wenchao, LIN Xiaoshan, ZHOU Weilin. Few-Shot Knowledge Graph Completion Based on Selective Attention [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(3): 646-658. |
[2] | ZHAO Honglei, TANG Huanling, ZHANG Yu, SUN Xueyuan, LU Mingyu. Named Entity Recognition Model Based on k-best Viterbi Decoupling Knowledge Distillation [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(3): 780-794. |
[3] | ZHANG Xishuo, LIU Lin, WANG Hailong, SU Guibin, LIU Jing. Survey of Entity Relationship Extraction Methods in Knowledge Graphs [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(3): 574-596. |
[4] | CHEN Jiaxing, HU Zhiwei, LI Ru, HAN Xiaoqi, LU Jiang, YAN Zhichao. Knowledge Graph Link Prediction Fusing Description and Structural Features [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(2): 486-495. |
[5] | TANG Ruixue, QIN Yongbin, CHEN Yanping. Named Entity Recognition Based on Multi-scale Attention [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(2): 506-515. |
[6] | JIANG Hongxun, ZHANG Lin, SUN Caihong. Knowledge Graph-Based Video Classification Algorithm for Film and Television Drama [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(1): 161-174. |
[7] | CUI Huanqing, SONG Weiqing, YANG Junzhu. Knowledge Ripple Graph Convolutional Network for Recommendation [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(9): 2209-2218. |
[8] | QIAN Fulan, WANG Wenxue, ZHENG Wenjie, CHEN Jie, ZHAO Shu. Reserved Hierarchy-Based Knowledge Graph Embedding for Link Prediction [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(9): 2174-2183. |
[9] | YE Han, SUN Haichun, LI Xin. Entity Anomaly Recognition Method Based on GCNN and GRU [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(8): 1938-1948. |
[10] | YAN Zhaoyao, DING Cangfeng, MA Lerong, CAO Lu, YOU Hao. Advances in Knowledge Graph Embedding Based on Graph Neural Networks [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(8): 1793-1813. |
[11] | LI Zhijie, HAN Ruirui, LI Changhua, ZHANG Jie, SHI Haoqi. Entity Relation Extraction Method Integrating Pre-trained Model and Attention [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(6): 1453-1462. |
[12] | PENG Yanfei, ZHANG Ruisi, WANG Ruihua, GUO Jialong. Survey on Few-Shot Knowledge Graph Completion Technology [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(6): 1268-1284. |
[13] | LIU Hebing, ZHANG Demeng, XIONG Shufeng, MA Xinming, XI Lei. Named Entity Recognition of Wheat Diseases and Pests Fusing ALBERT and Rules [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(6): 1395-1404. |
[14] | ZHAO Yehui, LIU Lin, WANG Hailong, HAN Haiyan, PEI Dongmei. Survey of Knowledge Graph Recommendation System Research [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(4): 771-791. |
[15] | HAN Hu, HAO Jun, ZHANG Qiankun, MENG Tiantian. Knowledge-Enhanced Interactive Attention Model for Aspect-Based Sentiment Analysis [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(3): 709-718. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/