[1] SANDLER M, HOWARD A, ZHU M, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2018: 4510-4520.
[2] HOWARD A G, ZHU M, CHEN B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications[EB/OL]. [2023-10-24]. https://arxiv.org/abs/1704.04861.
[3] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of the 14th European Conference on Computer Vision, Amsterdam, Oct 11-14, 2016. Cham: Springer, 2016: 21-37.
[4] TANG Q, LI J, SHI Z, et al. LightDet: a lightweight and accurate object detection network[C]//Proceedings of the 2020 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2020: 2243-2247.
[5] MA N, ZHANG X, ZHENG H T, et al. ShuffleNet V2: practical guidelines for efficient CNN architecture design[C]//Proceedings of the 15th European Conference on Computer Vision. Cham: Springer, 2018: 116-131.
[6] QIN Z, LI Z, ZHANG Z, et al. ThunderNet: towards real-time generic object detection on mobile devices[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 6718-6727.
[7] 刘鹏, 毕誉轩, 张天翼, 等. 注意力机制优化的全尺寸目标检测方法[J]. 电子测量与仪器学报, 2023, 37(2): 193-203.
LIU P, BI Y X, ZHANG T Y, et al. Full-size object detection method optimized by attention mechanism[J]. Journal of Electronic Measurement and Instrumentation, 2023, 37(2): 193-203.
[8] XIONG Y, LIU H, GUPTA S, et al. MobileDets: searching for object detection architectures for mobile accelerators[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 3825-3834.
[9] LYU C, ZHANG W, HUANG H, et al. RTMDet: an empirical study of designing real-time object detectors[EB/OL]. [2023-10-24]. https://arxiv.org/abs/2212.07784.
[10] CAI Z, SHEN Q. FalconNet: factorization for the light-weight ConvNets[EB/OL]. [2023-10-24]. https://arxiv.org/abs/2306.06365.
[11] MEHTA S, RASTEGARI M. MobileViT: light-weight, general-purpose, and mobile-friendly vision transformer[EB/OL]. [2023-10-24]. https://arxiv.org/abs/2110.02178.
[12] CHEN Y, DAI X, CHEN D, et al. Mobile-Former: bridging MobileNet and transformer[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 5270-5279.
[13] LV W, XU S, ZHAO Y, et al. DETRs beat YOLOs on real-time object detection[EB/OL]. [2023-10-24]. https://arxiv.org/abs/2304.08069.
[14] 孙扬, 韩磊, 王程庆, 等. 采用双支路与特征融合网络的路沿分割[J]. 计算机工程与应用, 2023, 59(9): 255-261.
SUN Y, HAN L, WANG C Q, et al. Curb segmentation using dual branch and feature fusion network[J]. Computer Engineering and Applications, 2023, 59(9): 255-261.
[15] 胡学刚, 龚宇, 敬力源. 双路径特征融合编解码结构的高速语义分割[J]. 计算机辅助设计与图形学学报, 2022, 34(12): 1911-1919.
HU X G, GONG Y, JING L Y. High-speed semantic segmentation based on dual-path feature fusion codec structure[J]. Journal of Computer-Aided Design & Computer Graphics,2022, 34(12): 1911-1919.
[16] 聂光涛, 黄华. 光学遥感图像目标检测算法综述[J]. 自动化学报, 2021, 47(8): 1749-1768.
NIE G T, HUANG H. A survey of object detection in optical remote sensing images[J]. Acta Automatica Sinica, 2021, 47(8): 1749-1768.
[17] LIU S, QI L, QIN H, et al. Path aggregation network for instance segmentation[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition.Washington: IEEE Computer Society, 2018: 8759-8768.
[18] TAN M, PANG R, LE Q V. EfficientDet: scalable and efficient object detection[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Piscataway: IEEE, 2020: 10781-10790.
[19] QIAO S, CHEN L C, YUILLE A. Detectors: detecting objects with recursive feature pyramid and switchable atrous convolution[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 10213-10224.
[20] YANG G, LEI J, ZHU Z, et al. AFPN: asymptotic feature pyramid network for object detection[EB/OL]. [2023-10-24]. https://arxiv.org/abs/2306.15988.
[21] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 7464-7475.
[22] HAN K, WANG Y, TIAN Q, et al. GhostNet: more features from cheap operations[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 1580-1589.
[23] WANG J, CHEN K, XU R, et al. CARAFE: content-aware reassembly of features[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 3007-3016.
[24] 吕卫, 梁芷茵, 褚晶辉. 基于改进Anchor-Free模型的交通标志检测算法[J]. 激光与光电子学进展, 2022, 59(24): 167-174.
LV W, LIANG Z Y, CHU J H. Traffic sign detection algorithm based on modified Anchor-Free model[J]. Laser Optoelectronics Progress, 2022, 59(24): 167-174.
[25] 李文举, 储王慧, 崔柳, 等. 结合图采样和图注意力的3D目标检测方法[J]. 计算机工程与应用, 2023, 59(9): 237-244.
LI W J, CHU W H, CUI L, et al. 3D object detection method combining on graph sampling and graph attention[J]. Computer Engineering and Applications, 2023, 59(9): 237-244.
[26] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the 15th European Conference on Computer Vision. Cham: Springer, 2018: 3-19.
[27] HE K, ZHANG X, REN S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916.
[28] HONG Y, PAN H, SUN W, et al. Deep dual-resolution networks for real-time and accurate semantic segmentation of road scenes[EB/OL]. [2023-10-24]. https://arxiv.org/abs/2101.06085.
[29] LIU S, HUANG D, WANG Y. Learning spatial fusion for single-shot object detection[EB/OL]. [2023-10-24]. https://arxiv.org/abs/1911.09516.
[30] GEIGER A, LENZ P, URTASUN R. Are we ready for auto-nomous driving? The KITTI vision benchmark suite[C]//Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2012: 3354-3361.
[31] YU F, CHEN H, WANG X, et al. BDD100K: a diverse driving dataset for heterogeneous multitask learning[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 2636-2645.
[32] EVERINGHAM M, VAN GOOL L, WILLIAMS C K I, et al. The Pascal visual object classes (VOC) challenge[J]. International Journal of Computer Vision, 2010, 88(2): 303-338.
[33] SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: visual explanations from deep networks via gradient-based localization[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Washington: IEEE Computer Society, 2017: 618-626.
[34] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[C]//Advances in Neural Information Processing Systems 28, Montreal, Dec 7-12, 2015: 91-99.
[35] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[EB/OL].[2023-10-24]. https://arxiv.org/abs/2004.10934.
[36] RAO Y, ZHAO W, TANG Y, et al. HorNet: efficient high-order spatial interactions with recursive gated convolutions[C]//Advances in Neural Information Processing Systems 35, New Orleans, Nov 28-Dec 9, 2022: 10353-10366.
[37] LIU Z, MAO H, WU C Y, et al. A convnet for the 2020s[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 11976-11986.
[38] 周飞, 郭杜杜, 王洋, 等. 基于改进YOLOv8的交通监控车辆检测算法[J]. 计算机工程与应用, 2024, 60(6): 110-120.
ZHOU F, GUO D D, WANG Y, et al. Vehicle detection algorithm based on improved YOLOv8 in traffic surveillance[J]. Computer Engineering and Applications, 2024, 60(6): 110-120. |