[1] FAN D P, JI G P, SUN G L, et al. Camouflaged object detection[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 2774-2784.
[2] JI G P, XIAO G B, CHOU Y C, et al. Video polyp segmentation: a deep learning perspective[J]. Machine Intelligence Research, 2022, 19(6): 531-549.
[3] FAN D P, ZHOU T, JI G P, et al. Inf-Net: automatic COVID-19 lung infection segmentation from CT images[J]. IEEE Transactions on Medical Imaging, 2020, 39(8): 2626-2637.
[4] LIU L, WANG R J, XIE C J, et al. PestNet: an end-to-end deep learning approach for large-scale multi-class pest detection and classification[J]. IEEE Access, 2019, 7: 45301-45312.
[5] RIZZO M, MARCUZZO M, ZANGARI A, et al. Fruit ripeness classification: a survey[J]. Artificial Intelligence in Agriculture, 2023, 7: 44-57.
[6] CHU H K, HSU W H, MITRA N J, et al. Camouflage images[J]. ACM Transactions on Graphics, 2010, 29(4): 1.
[7] MONDAL A. Camouflaged object detection and tracking: a survey[J]. International Journal of Image and Graphics, 2020, 20(4): 2050028.
[8] LV Y Q, ZHANG J, DAI Y C, et al. Simultaneously localize, segment and rank the camouflaged objects[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 11591-11601.
[9] LE T N, NGUYEN T V, NIE Z L, et al. Anabranch network for camouflaged object segmentation[J]. Computer Vision and Image Understanding, 2019, 184: 45-56.
[10] ZHU H W, LI P, XIE H R, et al. I can find you! Boundary guided separated attention network for camouflaged object detection[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2022, 36: 3608-3616.
[11] CHEN G, LIU S J, SUN Y J, et al. Camouflaged object detection via context-aware cross-level fusion[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(10): 6981-6993.
[12] ZHAI W, CAO Y, XIE H Y, et al. Deep texton-coherence network for camouflaged object detection[J]. IEEE Transactions on Multimedia, 2022, 25: 5155-5165.
[13] SUN Y J, WANG S, CHEN C, et al. Boundary-guided camouflaged object detection[EB/OL]. [2024-01-25]. https://arxiv.org/abs/2207.00794.
[14] ZHU H W, LI P, XIE H R, et al. I can find you! Boundary-guided separated attention network for camouflaged object detection[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2022, 36(3): 3608-3616.
[15] FAN D P, JI G P, CHENG M M, et al. Concealed object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(10): 6024-6042.
[16] YAN J N, LE T N, NGUYEN K D, et al. MirrorNet: bio-inspired camouflaged object segmentation[J]. IEEE Access, 2021, 9: 43290-43300.
[17] YANG F, ZHAI Q, LI X, et al. Uncertainty-guided transformer reasoning for camouflaged object detection[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 4126-4135.
[18] SUN D Y, JIANG S Y, QI L. Edge-aware mirror network for camouflaged object detection[C]//Proceedings of the 2023 IEEE International Conference on Multimedia and Expo. Piscataway: IEEE, 2023: 2465-2470.
[19] ZHUGE M C, FAN D P, LIU N, et al. Salient object detection via integrity learning[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 45: 3738-3752.
[20] LIU S T, HUANG D, WANG Y H. Receptive field block net for accurate and fast object detection[C]//Proceedings of the 15th European Conference on Computer Vision. Cham: Springer, 2018: 404-419.
[21] FAN D P, ZHAI Y J, BORJI A, et al. BBS-Net: RGB-D salient object detection with a bifurcated backbone strategy network [C]//Proceedings of the 16th European Conference on Computer Vision. Cham: Springer, 2020: 275-292.
[22] TAN J, XIONG P F, LV Z Y, et al. Local context attention for salient object segmentation[C]//Proceedings of the 15th Asian Conference on Computer Vision. Cham: Springer, 2021: 706-722.
[23] CHEN Z Y, XU Q Q, CONG R M, et al. Global context-aware progressive aggregation network for salient object detection[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7): 10599-10606.
[24] LIU Z, MAO H Z, WU C Y, et al. A ConvNet for the 2020s[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022:11966-11976.
[25] DAI Y M, GIESEKE F, OEHMCKE S, et al. Attentional feature fusion[C]//Proceedings of the 2021 IEEE Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2021: 3559-3568.
[26] CHENG M M, FAN D P. Structure-measure: a new way to evaluate foreground maps[J]. International Journal of Computer Vision, 2021, 129(9): 2622-2638.
[27] FAN D P, GONG C, CAO Y, et al. Enhanced-alignment measure for binary foreground map evaluation[EB/OL]. [2024-01-25]. https://arxiv.org/abs/1805.10421.
[28] MARGOLIN R, ZELNIK-MANOR L, TAL A. How to evaluate foreground maps[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2014: 248-255.
[29] PERAZZI F, KR?HENBüHL P, PRITCH Y, et al. Saliency filters: contrast based filtering for salient region detection[C]//Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2012: 733-740.
[30] JIA Q, YAO S L, LIU Y, et al. Segment, magnify and reiterate: detecting camouflaged objects the hard way[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 4703-4712.
[31] PANG Y W, ZHAO X Q, XIANG T Z, et al. Zoom in and out: a mixed-scale triplet network for camouflaged object detection[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 2150-2160.
[32] HE R Z, DONG Q H, LIN J Y, et al. Weakly-supervised camouflaged object detection with scribble annotations[EB/OL]. [2024-01-25]. https://arxiv.org/abs/2207.14083.
[33] MEI H, YANG X, ZHOU Y, et al. Distraction-aware camouflaged object segmentation[EB/OL]. [2024-01-25]. https://www.sciengine.com/SSI/doi/10.1360/SSI-2022-0138.
[34] JI G P, FAN D P, CHOU Y C, et al. Deep gradient learning for efficient camouflaged object detection[J]. Machine Intelligence Research, 2023, 20(1): 92-108.
[35] WU Z W, PAUDEL D P, FAN D P, et al. Source-free depth for object pop-out[C]//Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2023: 1032-1042.
[36] YIN B W, ZHANG X Y, HOU Q B, et al. Camo-Former:masked separable attention for camouflaged object detection [EB/OL]. [2024-02-16]. https://arxiv.org/abs/2212.06570.
[37] HUANG Z, DAI H, XIANG T Z, et al. Feature shrinkage pyramid for camouflaged object detection with transformers[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 5557-5566.
[38] HU X B, WANG S, QIN X B, et al. High-resolution iterative feedback network for camouflaged object detection[EB/OL]. [2024-02-16]. https://arxiv.org/abs/2203.11624.
[39] LIU Y, LI H H, CHENG J, et al. MSCAF-Net: a general framework for camouflaged object detection via learning multi-scale context-aware features[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2023, 33(9): 4934-4947.
[40] XING H Z, GAO S Y, WANG Y, et al. Go closer to see better: camouflaged object detection via object area amplification and figure-ground conversion[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2023, 33(10): 5444-5457. |